0基础学习PyFlink——使用PyFlink的SQL进行字数统计

2023-10-24 00:01

本文主要是介绍0基础学习PyFlink——使用PyFlink的SQL进行字数统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在《0基础学习PyFlink——Map和Reduce函数处理单词统计》和《0基础学习PyFlink——模拟Hadoop流程》这两篇文章中,我们使用了Python基础函数实现了字(符)统计的功能。这篇我们将切入PyFlink,使用这个框架实现字数统计功能。

PyFlink安装

安装Python

sudo apt install python3.10
sudo ln -s /usr/bin/python3.10 /usr/bin/python

安装虚拟环境

sudo apt install python3.10-venv

创建工程所在文件夹,并创建虚拟环境

mkdir pyflink-test
cd pyflink-test
python -m venv .env

进入虚拟环境,并安装PyFlink

source .env/bin/activate
pip3.10 install apache-flink

统计代码

Flink为开发者提供了如下不同层级的抽象。本篇我们将尽量使用SQL来实现功能。
在这里插入图片描述

创建环境

执行环境用于设置任务的属性(batch还是stream),以及一些运行时参数(parallelism.default等)。
和Hadoop不同的是,Flink是流批一体(既可以处理流,也可以处理批处理)的引擎,而前者是批处理引擎。
批处理很好理解,即给一批数据,我们一次性、成批处理完成。
而流处理则是指,数据源源不断进入引擎,没有尽头。
本文不对此做过多展开,只要记得本例使用的是批处理模式(in_batch_mode)即可。

import argparse
import logging
import sysfrom pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment)def word_count(input_path):config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)

Source

在前两篇文章中,我们使用内存中的常规结构体,如dict等来保存Map过后的数据。而本文介绍的SQL方式,则是通过Table(表)的形式来存储,即输入的数据会Map到一张表中

    # define the sourcemy_source_ddl = """create table source (word STRING) with ('connector' = 'filesystem','format' = 'csv','path' = '{}')""".format(input_path)t_env.execute_sql(my_source_ddl).print()tab = t_env.from_path('source')

这张表只有一个字段——String类型的word。它用于记录被切分后的一个个字符串。
这儿有个关键字with。它可以用于描述数据读写相关信息,即完成数据读写相关的设置。
connector用于指定连接方式,比如filesystem是指文件系统,即数据读写目标是一个文件;jdbc则是指一个数据库,比如mysql;kafka则是指一个Kafka服务。
format用于指定如何把二进制数据映射到表的列上。比如CSV,则是用“,”进行列的切割。

Execute

    # execute insertmy_select_ddl = """select word, count(1) as `count`from sourcegroup by word"""t_env.execute_sql(my_select_ddl).wait()

上述SQL我们按source表中的word字段聚类,统计每个字符出现的个数。
完整输出如下

Using Any for unsupported type: typing.Sequence[~T]
No module named google.cloud.bigquery_storage_v1. As a result, the ReadFromBigQuery transform *CANNOT* be used with `method=DIRECT_READ`.
OK
+--------------------------------+----------------------+
|                           word |                count |
+--------------------------------+----------------------+
|                              A |                    3 |
|                              B |                    1 |
|                              C |                    2 |
|                              D |                    2 |
|                              E |                    1 |
+--------------------------------+----------------------+
5 rows in set

完整代码

# sql_print.py
import argparse
import logging
import sysfrom pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment)def word_count(input_path):config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)# define the sourcemy_source_ddl = """create table source (word STRING) with ('connector' = 'filesystem','format' = 'csv','path' = '{}')""".format(input_path)t_env.execute_sql(my_source_ddl).print()tab = t_env.from_path('source')my_select_ddl = """select word, count(1) as `count`from sourcegroup by word"""t_env.execute_sql(my_select_ddl).print()if __name__ == '__main__':logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")parser = argparse.ArgumentParser()parser.add_argument('--input',dest='input',required=False,help='Input file to process.')argv = sys.argv[1:]known_args, _ = parser.parse_known_args(argv)word_count(known_args.input)

测试的输入文件

“A”,
“B”,
“C”,
“D”,
“A”,
“E”,
“C”,
“D”,
“A”,

运行的指令是

python sql_print.py --input input1.csv

参考资料

  • https://nightlies.apache.org/flink/flink-docs-master/zh/docs/concepts/overview/

这篇关于0基础学习PyFlink——使用PyFlink的SQL进行字数统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/271338

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.