悦影科技—脑影像数据MVPA和机器学习分析服务

2023-10-23 23:20

本文主要是介绍悦影科技—脑影像数据MVPA和机器学习分析服务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

近些年来,机器学习及大数据成为各行各业的热门。如今机器学习及python的编程已经出现在很多小学生的课本中,甚至成为一些学校的必修课程。目前,由谷歌公司开发的深度学习模型,能够对糖尿病视网膜病变做出快速准确的诊断,其诊断能力等于甚至超过了有经验的眼科医生[https://jamanetwork.com/journals/jama/fullarticle/2588763]。由国内的开发者开发的中枢神经系统肿瘤的诊断模型,其对常见的中枢神经系统肿瘤的诊断能力无论是速度还是准确度都远远超出了人类。

回到神经影像领域,不管是task-based fMRI所说的多体素/变量模式识别(MVPA)还是resting-state fMRI所说的机器学习逐渐成为各自研究领域的前沿。不同于传统的单变量的分析,机器学习或者多变量的分析能同时考虑到多个变量的高级的、交互的信息。训练出的模型可以应用与新的被试或新的scan。为此河南悦影医药科技有限公司(简称悦影科技)特推出脑影像数据机器学习分析业务。 我们团队由多年从事MRI、EEG数据处理和机器学习技术研究的博士和高校老师组成,“专业,诚信,合作,共赢”是我们一直恪守的服务理念,悦影科技竭诚为您提供高质量、精准的数据处理服务。
脑影像数据MVPA和机器学习分析具体业务如下:
一、静息态fMRI或者结构MRI的机器学习分析
计算得到的各种功能、结构磁共振指标都可以作为机器学习的特征。应用机器学习的目的一般为疾病的预测、诊断、鉴别诊断、表型(如症状)预测、疗效预测、疾病分型、神经机制解码等。具体分为:
1.分类:支持的算法包括但不限于支持向量机(SVM)、逻辑回归、L2正则分类、随机森林、高斯过程分类、Adaboost等。另外,我们也特别推出基于深度卷积神经网络的分类,其接受全脑功能连接网络(2D卷积)或者3D脑影像(3D卷积)作为特征。
2.回归:支持的算法包括但不限于最小二乘法线性回归、Lasso回归(L1正则),Ridge回归(L2正则)、Elastic-Net回归(L1+L2正则)、支持向量机回归(SVM)、高斯过程回归、随机森林回归、稀疏典型回归等。同样我们也可以定制基于深度学习的回归。
3.聚类:支持的算法包括但不限于K-means 聚类、层次聚类、谱聚类、基于密度的聚类(DBSCAN)。
二、任务态fMRI的MVPA分析
经过预处理后,每个被试的数据是一个4D时间序列数据,每一帧图像都是一个3D脑影像。无论您是block设计、event设计还是混合设计,只要您的的数据的每一个scan有对应的标签(比如面孔或者房子),而且数据是nifti或者常用的格式,我们在了解您的需求后能帮您完成任务态fMRI的MVPA分析。
在这里插入图片描述

Figure 1. 人工智能,机器学习以及深度学习的关系
在这里插入图片描述

Figure 2. 基于功能连接精神分裂症诊断结果示意图

三、个性化的分析项目
本团队老师有多年编程以及科研经验,能根据客户需求迅速找到科研突破口,实现文献中的核心技术难题。除了上述的分析指标之外,我们还可以为您提供以下服务:
1.已有具体研究思路和参考文献,但不知道怎么实现文献方法:我们可以为您复现文献的方法。
2.尚未有具体研究思路,但是有一定研究目的:我们根据您的研究目的,提供合适的方法。
注:由于个性化分析内容复杂多样,有意向的可以先找我们洽谈商议。

这篇关于悦影科技—脑影像数据MVPA和机器学习分析服务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/271124

相关文章

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比