开关电源EMI设计(原理讲解及实战分析)

2023-10-23 21:20

本文主要是介绍开关电源EMI设计(原理讲解及实战分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

反激式开关电源EMI设计

  • EMI滤波器的作用是双方向性的,既能有效阻止外界的电磁干扰经电源线进入设备,又能阻挡设备自身工作中产生的电磁骚扰经电源线进入电网,传送到其他敏感设备。所以它是抗干扰和干扰抑制中都用得到的一种器件。

  • 图中,电感的两个线圈绕在同一磁芯上(同名端都在线圈左侧),这种接线对差模电流(包括电源电流)产生的磁通相互抵消,不会产生磁路饱和;而对共模电流则体现一个很大的电感,取得大的滤波效果,故这个电感被称为共模电感。滤波器的这一结构特点说明它在很大程度上是用来对付共模干扰的。对一定尺寸的滤波器来说,在磁芯选定以后,电感线圈的电感量将取决于所用导线的线径,电流小的线径较细,线圈匝数可多一点,电感量就大一点;反之亦反。其典型值为几mH到零点几mH。

  • 由于两个线圈不可能完全对称,两个线圈产生的磁力线也不会全部集中在磁芯中,会产生一部分抵消不掉的漏磁通,造成有一定寄生的差模电感的存在,这对于克服差模干扰是有好处的(由于泄漏电感能够除去差模干扰,所以反而希望有适度的泄漏电感)。寄生差模电感的电感量测量可在两个线圈的进线侧相互短接的情况下,从两个线圈的出线侧来测量。电感量的大小因共模扼流圈的形状以及绕线方法不同而异,一般来说是共模电感量的0.1%--1%。

  • 由于电源电压是加在EMI共模电感的两个线圈上的,因而绝缘特性也很重要。所以多采用下图的形状,这样的形状对于泄漏电感和绝缘耐压都有利。

  • 共模干扰:由于电位差造成的电流扰动,对地的扰动称为共模干扰。

  • C2,C6位于火线与零线之间,用于衰减差模干扰,故称为差模电容。电容量的大小因涉及所用线路中容性差模电流的大小,对设备并无不利影响。电容器的耐压与火线—零线电压相当。常用250VAC的CBB(聚丙烯)电容,典型值为几十到几百nF。一般会在电容的两端并联一个电阻值为1M欧的电阻,起到泄放电容器上静电荷的作用,防止拔插电源时,电容通过人体放电,造成人身触电。此电阻不是必须的。

  • X ( C2,C6 ) 电容与共模电感组成pai型滤波电路,主要解决的是EMI,传导,副射等。X电容的引脚间距即安全间距在安规里面是有要求的。X电容最大不会大于1.5uF。

  • 说明:当没有共模电感时,电源通过保险,二极管,地,回到N线。可以看到回路中没有电阻,启动时刻,电容相当于短路,会产生浪涌;由于有共模电感的存在,可以有效的抑制浪涌电流,共模电感在启动时起到电抗的作用,使电容缓慢充电,起到保护元件及保险的作用。

  • C5,C10位于火线对地和零线对地处,与共模电感一起用于衰减共模干扰,故称为共模电容。因为他们涉及直流耐压和工频耐压的检验,故电容耐压至少为3KVDC。同时,又涉及对地泄漏电流的问题,故电容的容量受到限制,不能任意取大,一般为1—4nF ( 典型值为2.2nF )。

  • Y ( C5,C10 ) 电容:L,N差分的滤波用x电容;L,N与地的滤波用Y电容。

  • EMI滤波器的电路结构仅仅决定了它的低频特性(相当于一种低通滤波器的动作)。要想提高滤波器的高频特性,关键是注意其制作工艺。

如造成高频特性欠佳的主要原因是:A、结构不好,导致输入与输出之间有高频耦合。B、选用器件的高频特性不好。

通常EMI滤波器电路的结构设计要求循一个方向布局,在空间允许的情况下,电感与电容要保持一定距离。

在器件选用上,为控制电感的分布电容,电感器尽量用单层绕制,必要时可采用多个电感串联的办法来达到所需电感量。对电容的引线,要求短(“短”意味着引线电感小)。要选用寄生电感小的电容和寄生电容小的电感;在焊接时,电容器的引线要尽量短。这里共模电容对于保证共模滤波特性尤其重要,而在实际使用中,共模干扰的频率又比较高,所以选择共模电容的特性好坏是关键。除了用高频陶瓷电容外,目前市上还有三端电容和穿心电容出售,对改进滤波器的高频特性很有帮助。此外,滤波器的接地线要保持粗短,并保证与地是低阻抗的连接。

  • EMI中共模电感抑制的是对地的干扰。共模电感的大小以及x电容和Y电容的大小以现场测试再做调整。共模电感抑制共模电流的原理是:如果在L线上产生干扰,会造成磁场变化,N线上的磁场也发生变化,也抑制了干扰。L,N就不会发生电位差,不会由于电位差造成电流的扰动。

  • 如果测试时,副射过不了怎么办?解决的方法是将共模电感加大,X电容容值加大。但X电容太大的话,漏电流也就变大。一样是过不了副射等。国标上对漏电流是有标准的,对于潮湿的地方,漏电流要求可以大一点,标准是小于0.76mA。对于干噪的地方,要求小于0.2几mA。

  • 变压器,MOS管处布线时覆大地并连接到Y电容的大地。这样对EMI的抑制有很大的好处。

  • EMI滤波器对付高频传导干扰比较适用,对于雷击浪涌的干扰就不适用。因此,为了抑制雷击浪涌的干扰,还必须配合使用压敏电阻等干扰吸收器件。

  • 电容C7耐压的选择:220V*1.414 = 311V,留余量,电容选用450V。

  • 保险要求用慢断型的。T代表慢断型的。

这篇关于开关电源EMI设计(原理讲解及实战分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/270505

相关文章

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分