tamura纹理特征 JAVA_(zz)Tamura纹理特征的matlab实现(一)---粗糙度

2023-10-23 19:51

本文主要是介绍tamura纹理特征 JAVA_(zz)Tamura纹理特征的matlab实现(一)---粗糙度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

搜了好久也没找到Tamura纹理特征的实现代码,于是自己动手丰衣足食,找出了最原始的Tamura的论文《Textural

Features Corresponding to Visual

Perception》来研读。今天下午实现了粗糙度(coarseness)部分,与大家共享,有错误的地方,还望大家指正。后续的对比度(contrast)、方向度(directionality)、线性度(linelikeness)、规则度(regularity)、粗略度(roughness)会陆续实现并共享。

Tamura纹理特征要比灰度共生矩阵得到的纹理特征更直观,在视觉效果上更有优势,由于比较懒,一直避重就轻,到今天终于要直面问题了,代码如下:

coarseness.m

%graypic为待处理的灰度图片,2^kmax为最大窗口

function Fcrs=coarseness(graypic,kmax)

%获取图片大小

[h,w]=size(graypic);

%平均灰度值矩阵A

A=zeros(h,w,2^kmax);

%计算有效可计算范围内每个点的2^k邻域内的平均灰度值

for i=2^(kmax-1)+1:h-2^(kmax-1)

for j=2^(kmax-1)+1:w-2^(kmax-1)

for k=1:kmax

A(i,j,k)=mean2(graypic(i-2^(k-1):i+2^(k-1)-1,j-2^(k-1):j+2^(k-1)-1));

end

end

end

%对每个像素点,计算在水平和垂直方向上不重叠窗口之间的Ak差

for i=1+2^(kmax-1):h-2^(kmax-1)

for j=1+2^(kmax-1):w-2^(kmax-1)

for k=1:kmax

Eh(i,j,k)=abs(A(i+2^(k-1),j,k)-A(i-2^(k-1),j));

Ev(i,j,k)=abs(A(i,j+2^(k-1),k)-A(i,j-2^(k-1)));

end

end

end

%对每个像素点计算使E达到最大值的k

for i=2^(kmax-1)+1:h-2^(kmax-1)

for j=2^(kmax-1)+1:w-2^(kmax-1)

[maxEh,p]=max(Eh(i,j,:));

[maxEv,q]=max(Ev(i,j,:));

if

maxEh>maxEv

maxkk=p;

else

maxkk=q;

end

Sbest(i,j)=2^maxkk;

%每个像素点的最优窗口大小为2^maxkk

end

end

%所有Sbest的均值作为整幅图片的粗糙度

Fcrs=mean2(Sbest);

调用:

image=rgb2gray(imread('example.jpg'));

f=coarseness(image,5)

Tamura纹理特征的matlab实现(二)---对比度

a4c26d1e5885305701be709a3d33442f.png (2010-01-13 21:40:27)

TE<

a4c26d1e5885305701be709a3d33442f.png转载TE<

var $tag='tamura,纹理特,对比度,it'; var

$tag_code='c57dde215fc1a8b3216796890dd4f569'; var

$r_quote_bligid='59ead5d90100gx4v'; var $worldcup='0'; var

$worldcu

这篇关于tamura纹理特征 JAVA_(zz)Tamura纹理特征的matlab实现(一)---粗糙度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_39671621/article/details/114766017
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/270105

相关文章

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与