基于python的电商运动服饰销售可视化分析系统

2023-10-23 16:41

本文主要是介绍基于python的电商运动服饰销售可视化分析系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

温馨提示:文末有 CSDN 平台官方提供的学长 Wechat / QQ 名片 :)

1. 项目背景

        随着电⼦商务的蓬勃发展,⽹络服装销售已经逐渐成为消费者最为青睐的廉价购物渠道。本项目基于python网络爬虫从某电商平台抓取所有运动服饰的销售数据,分析不同品牌运动服装价格分布、主流品牌运动服装销售占比、不同标签的运动服装销售占比、男女款式运动服装销售占比等信息,多维度对比各类服装价格的高低。并利用 TensorFlow 构建深度学习模型,实现对运动服饰销售价格的建模和预测。

2. 功能组成

        基于python的电商运动服饰销售分析与预测系统的功能主要包括:

 3. 电商运动服饰销售数据爬虫

        利用 request + beautifulsoup 等工具,抓取某电商平台的运动服饰栏目的在售商品及店铺等信息:

options = Options()
options.add_argument('--headless')
options.add_argument('--disable-gpu')
chrome_driver = 'path to chromedriver'
browser = webdriver.Chrome(chrome_options=options, executable_path=chrome_driver)base_url = 'https://list.xxxxx.com/list.html?cat=1318,12102,9765&page={}&sort=sort_rank_asc&trans=1&JL=6_0_0#J_main'file_out = open('sports_wears.json', 'w', encoding='utf8')
page = 1
while page < 262:url = base_url.format(page)print('--> 抓取 {} 页:{}'.format(page, url))browser.get(url)soup = BeautifulSoup(browser.page_source, 'lxml')items = soup.find_all('li', class_='gl-item')item_infos = []for item in items:item_info = {}# 服装价格price = item.find('div', class_='p-price').i.text.strip()# 服装名称name = item.find('div', class_='p-name').a.em.text.strip()# 评论人数......# 店铺名称......item_info['comment'] = commentitem_info['shop'] = shopitem_info['tags'] = tagsprint(json.dumps(item_info, ensure_ascii=False))item_infos.append(json.dumps(item_info, ensure_ascii=False) + '\n')page += 1# 保存数据file_out.writelines(item_infos)file_out.flush()time.sleep(1.1)
browser.close()

4. 电商运动服饰销售分析与预测系统

4.1 店铺销售情况查询

        使用选择框进行店铺的选择,查询当前各店铺在售运动服装的数据,包括:服装名称、店铺名称、标签、大小型号、评论个数、价格(元):

4.2 运动服装价格分布及影响因素分析

        为了更好的统计在售运动服装价格分布和大小型号之间的关系,设定了三类图,不同型号的运动服装在售件数(扇形图)、不同大小型号的运动服装的均价分布(条形图)、电商在售运动服装价格分布情况(散点图):

         各种型号的运动服装在售件数都显示在了扇形图对应的区域中,当鼠标悬浮在相应的位置时,便会显示该型号的在售个数和占比信息,如图中显示M型号的在售个数为3901,占比25.2%。在第二张图中,显示了不同大小型号的运动服装的均价分布,当鼠标悬浮在相应的位置时,便会显示该型号的均价信息,如途中显示的SS均价在559.00元。可以看出,在0-500之间的是最多的。同时由于散点过于密集,在此图的右上角具备区域缩放、区域缩放还原、还原、下载的功能。通过图表,可以很清晰的看到在售运动服装价格分布与大小型号之间关系。

 4.3 主流品牌运动服装销售占比

        不同品牌的运动服饰,其销售价格、在售数量不同,也反应了品牌的受欢迎程度,对不同品牌运动服装销售占比就行统计分析:

 4.4 不同标签的运动服装销售占比

        对新品、放心购、闪购、赠、门店有售、厂商配送、物流、险、自营、满减、满赠等不同标签的商品就行统计分析:

4.5 男女款式运动服装销售占比

        分析性别对运动服饰销售的影响程度,对齐销售占比就行统计分析:

 4.6 基于神经网络的运动服装价格预测

        利用商品的描述文本和标签等信息,预测商品的销售价格。基于 keras 或 TensorFlow 构建双向 GRU+Dense 的神经网络模型,利用抓取的运动服装数据进行模型的训练和验证:

# 构造双向 GRU + Dense 神经网络模型
def build_model():inp = Input(shape=(maxlen,))x = Embedding(max_features, embed_size)(inp)x = Bidirectional(GRU(64, return_sequences=True))(x)x = GlobalMaxPool1D()(x)x = Dense(16, activation="relu")(x)x = Dropout(0.1)(x)x = Dense(len(all_price_levels_map), activation="softmax")(x)model = Model(inputs=inp, outputs=x)model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])return model

        模型结构如下: 

        并对商品的描述文本进行中文分词和词性标注:

# 词性标注算法
from jieba.analyse.tfidf import TFIDFclass WordSegmentPOSKeywordExtractor(TFIDF):def extract_sentence(self, sentence):......seg_words = []pos_words = []for w in words:wc = w.wordseg_words.append(wc)pos_words.append(w.flag)if len(wc.strip()) < 2 or wc.lower() in self.stop_words:continuefreq[wc] = freq.get(wc, 0.0) + 1.0return seg_words, pos_wordsextractor = WordSegmentPOSKeywordExtractor()

5. 结论

        本项目基于python网络爬虫从某电商平台抓取所有运动服饰的销售数据,分析不同品牌运动服装价格分布、主流品牌运动服装销售占比、不同标签的运动服装销售占比、男女款式运动服装销售占比等信息,多维度对比各类服装价格的高低。并利用 TensorFlow 构建深度学习模型,实现对运动服饰销售价格的建模和预测。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码

技术交流认准下方 CSDN 官方提供的学长 Wechat / QQ 名片 :)

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

这篇关于基于python的电商运动服饰销售可视化分析系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/269104

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的