使用Python在OpenCV中使用haar Cascade的微笑检测

2023-10-23 13:40

本文主要是介绍使用Python在OpenCV中使用haar Cascade的微笑检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们将使用 Haar 级联分类器在图像中进行微笑检测。haar 级联分类器是一种有效的对象检测方法。这是一种基于机器学习的方法。为了训练用于微笑检测的haar级联分类器,该算法最初需要大量的正面图像(带微笑的图像)和负面图像(没有微笑的图像)。然后从这些正图像和负图像训练分类器。然后,它用于检测其他图像中的微笑。

我们可以使用已经训练好的haar级联来进行微笑检测。对于输入图像中的微笑检测,我们需要两个haar级联,一个用于面部检测,另一个用于微笑检测。我们将使用以下两个 haar 级联 -

  • haarcascade_frontalface_default.xml

  • haarcascade_smile.xml

如何下载Haarcascades?

您可以在GitHub网站地址以下找到不同的h-

 

opencv/data/haarcascades at master · opencv/opencv · GitHub

要下载微笑Haarcascades,请单击haarcascade_smile.xml文件。以原始格式打开它,右键单击并保存。 

步骤

要检测图像中的微笑,您可以按照以下步骤操作 -

  • 导入所需的库。在以下所有示例中,所需的 Python 库是 OpenCV。确保您已经安装了它。

  • 使用 cv2.imread() 读取输入图像。指定完整的图像路径。将图像转换为灰度图像。

  • 启动 Haar 级联分类器对象face_cascade = cv2。CascadeClassifier() 用于人脸检测和 smile_cascade = cv2。用于微笑检测的级联分类器。传递 haar 级联 xml 文件的完整路径。您可以使用 haar 级联文件haarcascade_frontalface_default.xml来检测图像中的人脸,并使用haarcascade_smile.xml来检测微笑。

  • 使用 face_cascade.detectMultiScale() 检测输入图像中的人脸。它以 (x,y,w,h) 格式返回检测到的人脸的坐标。

  • 将人脸投资回报率定义为检测到的人脸的图像[y:y+h, x:x+w]。现在检测检测到的面部区域 (roi) 内的微笑。使用 smile_cascade.detectMultiScale()。它还以 (sx,sy,sw,sh) 格式返回眼睛边界矩形的坐标。

  • 使用 cv2.rectangle() 在原始图像中检测到的微笑(嘴巴)周围绘制边界矩形。

  • 在嘴周围使用绘制的边框显示图像。

让我们看一些例子,以便更清楚地理解。

在这个 Python 程序中,我们使用 haar 级联在输入图像中执行微笑检测。

 

# import required libraries import cv2 # read input image img = cv2.imread('smile1.jpg') # convert the image to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # read haar cascade for face detection face_cascade = cv2.CascadeClassifier('haarcascades\haarcascade_frontalface_default.xml') # read haar cascade for smile detection smile_cascade = cv2.CascadeClassifier('haarcascades\haarcascade_smile.xml') # Detects faces in the input image faces = face_cascade.detectMultiScale(gray, 1.3, 5) print('Number of detected faces:', len(faces)) # loop over all the faces detected for (x,y,w,h) in faces: # draw a rectangle in a face cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,255),2) cv2.putText(img, "Face", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2) roi_gray = gray[y:y+h, x:x+w] roi_color = img[y:y+h, x:x+w] # detecting smile within the face roi smiles = smile_cascade.detectMultiScale(roi_gray, 1.8, 20) if len(smiles) > 0: print("smile detected") for (sx, sy, sw, sh) in smiles: cv2.rectangle(roi_color, (sx, sy), ((sx + sw), (sy + sh)), (0, 0, 255), 2) cv2.putText(roi_color, "smile", (sx, sy), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) else: print("smile not detected") # Display an image in a window cv2.imshow('Smile Image',img) cv2.waitKey(0) cv2.destroyAllWindows()

我们将使用此图像作为该程序的输入文件 -

输出

在执行时,它将产生以下输出 -

Number of detected faces: 1
smile detected

我们得到以下输出窗口 -

这篇关于使用Python在OpenCV中使用haar Cascade的微笑检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/268200

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.