DolphinDB实现动量交易策略详解

2023-10-23 03:40

本文主要是介绍DolphinDB实现动量交易策略详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动量策略是最流行的量化策略之一。商品期货的CTA策略,绝大多数都是基于动量策略。在股票市场,动量策略也是常用的量化因子之一。通俗地讲,动量策略就是“追涨杀跌”。下面我们将介绍如何在DolphinDB中测试动量交易策略,并计算动量交易策略的累积回报。

DolphinDB database 是一款高性能分布式时序数据库。与其它通常的数据库不同,DolphinDB不仅可以存储和检索数据,而且具备强大的编程和分析功能,可以直接在数据库内完成策略回测等复杂的工作,便捷且高效。

最常用的股票动量因素是基于过去一年中扣除最近一个月的收益率。动量策略通常是一个月调整一次并且持有期也是一个月。本文的例子中,每天调整1/21的投资组合,并持有新的投资组合21天。为了简化起见,本文的回测没有考虑交易成本。

假设原始数据是一个CSV文件。它包含以下列:

  • PERMNO:股票代码

  • date:日期

  • PRC:每股价格

  • SHROUT:流通股数

  • RET:股票日收益

  • VOL:每日交易量

步骤1. 加载股票交易数据,对数据进行清洗和过滤,然后为每只股票构建过去一年扣除最近一个月收益率的动量信号。

US = loadText("C:/DolphinDB/Data/US.csv")
def loadPriceData(inData){USstocks = select PERMNO, date, abs(PRC) as PRC, VOL, RET, SHROUT*abs(PRC) as MV from inData where weekday(date) between 1:5, isValid(PRC), isValid(VOL) order by PERMNO, dateUSstocks = select PERMNO, date, PRC, VOL, RET, MV, cumprod(1+RET) as cumretIndex from USstocks context by PERMNOreturn select PERMNO, date, PRC, VOL, RET, MV, move(cumretIndex,21)\move(cumretIndex,252)-1 as signal from USstocks context by PERMNO 
}
priceData = loadPriceData(US)

步骤2. 为动量策略生成投资组合

首先,选择满足以下条件的流通股:动量信号值无缺失、当天的交易量为正、市值超过1亿美元以及每股价格超过5美元。

def genTradables(indata){return select date, PERMNO, MV, signal from indata where PRC>5, MV>100000, VOL>0, isValid(signal) order by date
}
tradables = genTradables(priceData)

然后根据每天的动量信号,产生10组流通股票。只保留2个最极端的群体(赢家和输家)。假设在21天内,每天总是多头1美元和空头1美元,所以我们每天在赢家组多头$1/21,在输家组每天空头$1/21。在每组中,我们可以使用等权重或市值权重, 来计算投资组合形成日期上每个股票的权重。

//WtScheme=1表示等权重;WtScheme=2表示值权重
def formPortfolio(startDate, endDate, tradables, holdingDays, groups, WtScheme){ports = select date, PERMNO, MV, rank(signal,,groups) as rank, count(PERMNO) as symCount, 0.0 as wt from tradables where date between startDate:endDate context by date having count(PERMNO)>=100if (WtScheme==1){update ports set wt = -1.0\count(PERMNO)\holdingDays where rank=0 context by dateupdate ports set wt = 1.0\count(PERMNO)\holdingDays where rank=groups-1 context by date}else if (WtScheme==2){update ports set wt = -MV\sum(MV)\holdingDays where rank=0 context by dateupdate ports set wt = MV\sum(MV)\holdingDays where rank=groups-1 context by date}return select PERMNO, date as tranche, wt from ports where wt != 0 order by PERMNO, date
}
startDate=1996.01.01
endDate=2017.01.01 
holdingDays=21
groups=10
ports = formPortfolio(startDate, endDate, tradables, holdingDays, groups, 2)
dailyRtn = select date, PERMNO, RET as dailyRet from priceData where date between startDate:endDate

步骤3. 计算投资组合中每只股票接下来21天的利润或损失。在投资组合形成后的21天关停投资组合。

def calcStockPnL(ports, dailyRtn, holdingDays, endDate, lastDays){ages = table(1..holdingDays as age)dates = sort distinct ports.tranchedictDateIndex = dict(dates, 1..dates.size())dictIndexDate = dict(1..dates.size(), dates)pos = select dictIndexDate[dictDateIndex[tranche]+age] as date, PERMNO, tranche, age, take(0.0,size age) as ret, wt as expr, take(0.0,size age) as pnl from cj(ports,ages) where isValid(dictIndexDate[dictDateIndex[tranche]+age]), dictIndexDate[dictDateIndex[tranche]+age]<=min(lastDays[PERMNO], endDate)update pos set ret = dailyRet from ej(pos, dailyRtn,`date`PERMNO)update pos set expr = expr*cumprod(1+ret) from pos context by PERMNO, trancheupdate pos set pnl = expr*ret/(1+ret)return pos
}
lastDaysTable = select max(date) as date from priceData group by PERMNO
lastDays = dict(lastDaysTable.PERMNO, lastDaysTable.date)
undef(`priceData, VAR)
stockPnL = calcStockPnL(ports, dailyRtn, holdingDays, endDate, lastDays)

步骤4. 计算投资组合的利润或损失,并绘制随时间推移的动量策略累积回报。

portPnL = select sum(pnl) as pnl from stockPnL group by date
portPnL = select * from portPnL order by date;
plot(cumsum(portPnL.pnl) as cumulativeReturn,portPnL.date, "Cumulative Returns of the Momentum Strategy")

以下是美国股票市场1996年到2016年,20年回测的结果。回测时,每天产生一个新的tranche,包含大约1500只股票(平均每天约7500只股票,取20%),持有21天。如此庞大的数据量和计算量,使用单线程计算,DolphinDB耗时仅3分钟。

动量交易策略实施起来需要理解获得超额回报的原理和一定的交易技能,以及可能带来的投资风险。感兴趣的朋友可以到官网下载 DolphinDB database,设计自己的动量交易策略。

这篇关于DolphinDB实现动量交易策略详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/265473

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础