Introduction to Advanced Machine Learning, 第二周,Tensorflow-task(hse-aml/intro-to-dl,简单注释,答案,附图)

本文主要是介绍Introduction to Advanced Machine Learning, 第二周,Tensorflow-task(hse-aml/intro-to-dl,简单注释,答案,附图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是俄罗斯高等经济学院的系列课程第一门,Introduction to Advanced Machine Learning,第二周第一个编程作业。
这个作业一共两个任务,难易程度:容易。
1. 熟悉TensorFlow,计算RMS
2. 使用Logistic Regress对MNIST图片进行分类,是一个二元分类问题。

Going deeper with Tensorflow

In this video, we’re going to study the tools you’ll use to build deep learning models. Namely, Tensorflow.

If you’re running this notebook outside the course environment, you’ll need to install tensorflow:
* pip install tensorflow should install cpu-only TF on Linux & Mac OS
* If you want GPU support from offset, see TF install page

import sys
sys.path.append("..")
import grading

Visualization

Plase note that if you are running on the Coursera platform, you won’t be able to access the tensorboard instance due to the network setup there. If you run the notebook locally, you should be able to access TensorBoard on http://127.0.0.1:7007/

! killall tensorboard
import os
os.system("tensorboard --logdir=/tmp/tboard --port=7007 &");
/bin/sh: 1: killall: not found
import tensorflow as tf
s = tf.InteractiveSession()

Warming up

For starters, let’s implement a python function that computes the sum of squares of numbers from 0 to N-1.

import numpy as np
def sum_sin(N):return np.sum(np.arange(N)**2)
%%time
sum_sin(10**8)
CPU times: user 412 ms, sys: 344 ms, total: 756 ms
Wall time: 1.06 s662921401752298880

Tensoflow teaser

Doing the very same thing

# An integer parameter
N = tf.placeholder('int64', name="input_to_your_function")# A recipe on how to produce the same result
result = tf.reduce_sum(tf.range(N)**2)
result
<tf.Tensor 'Sum:0' shape=() dtype=int64>
%%time
#result.eval({N: 10**8})
s.run(result,{N:10**8})
CPU times: user 488 ms, sys: 144 ms, total: 632 ms
Wall time: 477 ms662921401752298880
writer = tf.summary.FileWriter("/tmp/tboard", graph=s.graph)

How does it work?

  1. Define placeholders where you’ll send inputs
  2. Make symbolic graph: a recipe for mathematical transformation of those placeholders
  3. Compute outputs of your graph with particular values for each placeholder
    • output.eval({placeholder:value})
    • s.run(output, {placeholder:value})

So far there are two main entities: “placeholder” and “transformation”
* Both can be numbers, vectors, matrices, tensors, etc.
* Both can be int32/64, floats, booleans (uint8) of various size.

  • You can define new transformations as an arbitrary operation on placeholders and other transformations
    • tf.reduce_sum(tf.arange(N)**2) are 3 sequential transformations of placeholder N
    • There’s a tensorflow symbolic version for every numpy function
    • a+b, a/b, a**b, ... behave just like in numpy
    • np.mean -> tf.reduce_mean
    • np.arange -> tf.range
    • np.cumsum -> tf.cumsum
    • If if you can’t find the op you need, see the docs.

tf.contrib has many high-level features, may be worth a look.

with tf.name_scope("Placeholders_examples"):# Default placeholder that can be arbitrary float32# scalar, vertor, matrix, etc.arbitrary_input = tf.placeholder('float32')# Input vector of arbitrary lengthinput_vector = tf.placeholder('float32', shape=(None,))# Input vector that _must_ have 10 elements and integer typefixed_vector = tf.placeholder('int32', shape=(10,))# Matrix of arbitrary n_rows and 15 columns# (e.g. a minibatch your data table)input_matrix = tf.placeholder('float32', shape=(None, 15))# You can generally use None whenever you don't need a specific shapeinput1 = tf.placeholder('float64', shape=(None, 100, None))input2 = tf.placeholder('int32', shape=(None, None, 3, 224, 224))# elementwise multiplicationdouble_the_vector = input_vector*2# elementwise cosineelementwise_cosine = tf.cos(input_vector)# difference between squared vector and vector itself plus onevector_squares = input_vector**2 - input_vector + 1
my_vector =  tf.placeholder('float32', shape=(None,), name="VECTOR_1")
my_vector2 = tf.placeholder('float32', shape=(None,))
my_transformation = my_vector * my_vector2 / (tf.sin(my_vector) + 1)
print(my_transformation)
Tensor("truediv:0", shape=(?,), dtype=float32)
dummy = np.arange(5).astype('float32')
print(dummy)
my_transformation.eval({my_vector:dummy, my_vector2:dummy[::-1]})
[ 0.  1.  2.  3.  4.]array([ 0.        ,  1.62913239,  2.09501147,  2.62899613,  0.        ], dtype=float32)
writer.add_graph(my_transformation.graph)
writer.flush()

TensorBoard allows writing scalars, images, audio, histogram. You can read more on tensorboard usage here.

Summary

  • Tensorflow is based on computation graphs
  • The graphs consist of placehlders and transformations

Mean squared error

Your assignment is to implement mean squared error in tensorflow.

with tf.name_scope("MSE"):y_true = tf.placeholder("float32", shape=(None,), name="y_true")y_predicted = tf.placeholder("float32", shape=(None,), name="y_predicted")# Your code goes here# You want to use tf.reduce_mean# mse = tf.<...>mse = tf.reduce_mean((y_true - y_predicted)**2)
def compute_mse(vector1, vector2):return mse.eval({y_true: vector1, y_predicted: vector2})
writer.add_graph(mse.graph)
writer.flush()

Tests and result submission. Please use the credentials obtained from the Coursera assignment page.

Variables

The inputs and transformations have no value outside function call. This isn’t too comfortable if you want your model to have parameters (e.g. network weights) that are always present, but can change their value over time.

Tensorflow solves this with tf.Variable objects.
* You can assign variable a value at any time in your graph
* Unlike placeholders, there’s no need to explicitly pass values to variables when s.run(...)-ing
* You can use variables the same way you use transformations

# Creating a shared variable
shared_vector_1 = tf.Variable(initial_value=np.ones(5),name="example_variable")
# Initialize variable(s) with initial values
s.run(tf.global_variables_initializer())# Evaluating shared variable (outside symbolicd graph)
print("Initial value", s.run(shared_vector_1))# Within symbolic graph you use them just
# as any other inout or transformation, not "get value" needed
Initial value [ 1.  1.  1.  1.  1.]
# Setting a new value
s.run(shared_vector_1.assign(np.arange(5)))# Getting that new value
print("New value", s.run(shared_vector_1))
New value [ 0.  1.  2.  3.  4.]

tf.gradients - why graphs matter

  • Tensorflow can compute derivatives and gradients automatically using the computation graph
  • True to its name it can manage matrix derivatives
  • Gradients are computed as a product of elementary derivatives via the chain rule:

f(g(x))x=f(g(x))g(x)g(x)x ∂ f ( g ( x ) ) ∂ x = ∂ f ( g ( x ) ) ∂ g ( x ) ⋅ ∂ g ( x ) ∂ x

It can get you the derivative of any graph as long as it knows how to differentiate elementary operations

my_scalar = tf.placeholder('float32')scalar_squared = my_scalar**2# A derivative of scalar_squared by my_scalar
derivative = tf.gradients(scalar_squared, [my_scalar, ])
derivative
[<tf.Tensor 'gradients/pow_1_grad/Reshape:0' shape=<unknown> dtype=float32>]
import matplotlib.pyplot as plt
%matplotlib inlinex = np.linspace(-3, 3)
x_squared, x_squared_der = s.run([scalar_squared, derivative[0]],#What does the [0] mean?{my_scalar:x})plt.plot(x, x_squared,label="$x^2$")
plt.plot(x, x_squared_der, label=r"$\frac{dx^2}{dx}$")
plt.legend();
plt.grid()

!这里写图片描述

Why that rocks

my_vector = tf.placeholder('float32', [None])
# Compute the gradient of the next weird function over my_scalar and my_vector
# Warning! Trying to understand the meaning of that function may result in permanent brain damage
weird_psychotic_function = tf.reduce_mean((my_vector+my_scalar)**(1+tf.nn.moments(my_vector,[0])[1]) + 1./ tf.atan(my_scalar))/(my_scalar**2 + 1) + 0.01*tf.sin(2*my_scalar**1.5)*(tf.reduce_sum(my_vector)* my_scalar**2)*tf.exp((my_scalar-4)**2)/(1+tf.exp((my_scalar-4)**2))*(1.-(tf.exp(-(my_scalar-4)**2))/(1+tf.exp(-(my_scalar-4)**2)))**2der_by_scalar = tf.gradients(weird_psychotic_function, my_scalar)
der_by_vector = tf.gradients(weird_psychotic_function, my_vector)
# Plotting the derivative
scalar_space = np.linspace(1, 7, 100)y = [s.run(weird_psychotic_function, {my_scalar:x, my_vector:[1, 2, 3]})for x in scalar_space]plt.plot(scalar_space, y, label='function')y_der_by_scalar = [s.run(der_by_scalar,{my_scalar:x, my_vector:[1, 2, 3]})for x in scalar_space]plt.plot(scalar_space, y_der_by_scalar, label='derivative')
plt.grid()
plt.legend();

这里写图片描述

y_guess = tf.Variable(np.zeros(2, dtype='float32'))
y_true = tf.range(1, 3, dtype='float32')
loss = tf.reduce_mean((y_guess - y_true + tf.random_normal([2]))**2) 
#loss = tf.reduce_mean((y_guess - y_true)**2) 
#loss = -tf.reduce_mean(y_true * tf.log(y_guess) + (1-y_true) * tf.log(1-y_guess)) 
optimizer = tf.train.MomentumOptimizer(0.01, 0.5).minimize(loss, var_list=y_guess)
from matplotlib import animation, rc
import matplotlib_utils
from IPython.display import HTML, display_htmlfig, ax = plt.subplots()
y_true_value = s.run(y_true)
level_x = np.arange(0, 2, 0.02)
level_y = np.arange(0, 3, 0.02)
X, Y = np.meshgrid(level_x, level_y)
Z = (X - y_true_value[0])**2 + (Y - y_true_value[1])**2
ax.set_xlim(-0.02, 2)
ax.set_ylim(-0.02, 3)
s.run(tf.global_variables_initializer())
ax.scatter(*s.run(y_true), c='red')
contour = ax.contour(X, Y, Z, 10)
ax.clabel(contour, inline=1, fontsize=10)
line, = ax.plot([], [], lw=2)def init():line.set_data([], [])return (line,)guesses = [s.run(y_guess)]def animate(i):s.run(optimizer)guesses.append(s.run(y_guess))line.set_data(*zip(*guesses))return (line,)anim = animation.FuncAnimation(fig, animate, init_func=init,frames=400, interval=20, blit=True)

!这里写图片描述

try:display_html(HTML(anim.to_html5_video()))
# In case the build-in renderers are unaviable, fall back to
# a custom one, that doesn't require external libraries
except RuntimeError:anim.save(None, writer=matplotlib_utils.SimpleMovieWriter(0.001))

Logistic regression

Your assignment is to implement the logistic regression

Plan:
* Use a shared variable for weights
* Use a matrix placeholder for X

We shall train on a two-class MNIST dataset
* please note that target y are {0,1} and not {-1,1} as in some formulae

from sklearn.datasets import load_digits
mnist = load_digits(2)X, y = mnist.data, mnist.targetprint("y [shape - %s]:" % (str(y.shape)), y[:10])
print("X [shape - %s]:" % (str(X.shape)))# input features is 64, number of examples is 360
y [shape - (360,)]: [0 1 0 1 0 1 0 0 1 1]
X [shape - (360, 64)]:
print('X:\n',X[:3,:10])
print('y:\n',y[:10])
plt.imshow(X[1].reshape([8,8]));
X:[[  0.   0.   5.  13.   9.   1.   0.   0.   0.   0.][  0.   0.   0.  12.  13.   5.   0.   0.   0.   0.][  0.   0.   1.   9.  15.  11.   0.   0.   0.   0.]]
y:[0 1 0 1 0 1 0 0 1 1]

!这里写图片描述

It’s your turn now!
Just a small reminder of the relevant math:

P(y=1|X)=σ(XW+b) P ( y = 1 | X ) = σ ( X ⋅ W + b )

loss=log(P(ypredicted=1))ytruelog(1P(ypredicted=1))(1ytrue) loss = − log ⁡ ( P ( y predicted = 1 ) ) ⋅ y true − log ⁡ ( 1 − P ( y predicted = 1 ) ) ⋅ ( 1 − y true )

σ(x) σ ( x ) is available via tf.nn.sigmoid and matrix multiplication via tf.matmul

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

Your code goes here. For the training and testing scaffolding to work, please stick to the names in comments.

# Model parameters - weights and bias
# weights = tf.Variable(...) shape should be (X.shape[1], 1)
# b = tf.Variable(...)#weights = tf.Variable(np.zeros((X.shape[1],1 ), dtype='float32'))# input features is 64
#b = tf.Variable(np.zeros((1,1), dtype='float32'))weights = tf.Variable(tf.random_normal(shape=[X.shape[1], 1], mean=0, stddev = 0.01))
b = tf.Variable(0.0)
s.run(tf.global_variables_initializer())
# Placeholders for the input data
# input_X = tf.placeholder(...)
# input_y = tf.placeholder(...)
input_X = tf.placeholder("float32", shape=(None,None), name="input_X")# the shape is none * none to more adaptive.这里需要写成None × None,后面可适应性强
input_y = tf.placeholder("float32", shape=(None,), name="input_y")
# The model code# Compute a vector of predictions, resulting shape should be [input_X.shape[0],]
# This is 1D, if you have extra dimensions, you can  get rid of them with tf.squeeze .
# Don't forget the sigmoid.
# predicted_y = <predicted probabilities for input_X>
predicted_y = tf.sigmoid(tf.matmul(input_X,weights) + b)
predicted_y = tf.squeeze(predicted_y)# Loss. Should be a scalar number - average loss over all the objects
# tf.reduce_mean is your friend here
# loss = <logistic loss (scalar, mean over sample)>loss = -tf.reduce_mean(input_y * tf.log(predicted_y) + (1-input_y)* tf.log(1-predicted_y))
print(loss.shape)
#optimizer = tf.train.MomentumOptimizer(0.01, 0.5).minimize(loss)
optimizer = tf.train.AdamOptimizer(learning_rate = 0.01,beta1=0.9,beta2=0.999,epsilon=1e-08,).minimize(loss)
# See above for an example. tf.train.*Optimizer
# optimizer = <optimizer that minimizes loss>

A test to help with the debugging

validation_weights = 1e-3 * np.fromiter(map(lambda x:s.run(weird_psychotic_function, {my_scalar:x, my_vector:[1, 0.1, 2]}),0.15 * np.arange(1, X.shape[1] + 1)),count=X.shape[1], dtype=np.float32)[:, np.newaxis]
# Compute predictions for given weights and bias
prediction_validation = s.run(predicted_y, {input_X: X,weights: validation_weights,b: 1e-1})# Load the reference values for the predictions
validation_true_values = np.loadtxt("validation_predictons.txt")assert prediction_validation.shape == (X.shape[0],),\"Predictions must be a 1D array with length equal to the number " \"of examples in input_X"
assert np.allclose(validation_true_values, prediction_validation)
loss_validation = s.run(loss, {input_X: X[:100],input_y: y[-100:],weights: validation_weights+1.21e-3,b: -1e-1})
assert np.allclose(loss_validation, 0.728689)
from sklearn.metrics import roc_auc_score
s.run(tf.global_variables_initializer())
for i in range(5):s.run(optimizer, {input_X: X_train, input_y: y_train})loss_i = s.run(loss, {input_X: X_train, input_y: y_train})print("loss at iter %i:%.4f" % (i, loss_i))print("train auc:", roc_auc_score(y_train, s.run(predicted_y, {input_X:X_train})))print("test auc:", roc_auc_score(y_test, s.run(predicted_y, {input_X:X_test})))

Coursera submission

grade_submitter = grading.Grader("BJCiiY8sEeeCnhKCj4fcOA")
test_weights = 1e-3 * np.fromiter(map(lambda x:s.run(weird_psychotic_function, {my_scalar:x, my_vector:[1, 2, 3]}),0.1 * np.arange(1, X.shape[1] + 1)),count=X.shape[1], dtype=np.float32)[:, np.newaxis]

First, test prediction and loss computation. This part doesn’t require a fitted model.

prediction_test = s.run(predicted_y, {input_X: X,weights: test_weights,b: 1e-1})
assert prediction_test.shape == (X.shape[0],),\"Predictions must be a 1D array with length equal to the number " \"of examples in X_test"
grade_submitter.set_answer("0ENlN", prediction_test)
loss_test = s.run(loss, {input_X: X[:100],input_y: y[-100:],weights: test_weights+1.21e-3,b: -1e-1})
# Yes, the X/y indices mistmach is intentional

这篇关于Introduction to Advanced Machine Learning, 第二周,Tensorflow-task(hse-aml/intro-to-dl,简单注释,答案,附图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/264447

相关文章

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Python中的输入输出与注释教程

《Python中的输入输出与注释教程》:本文主要介绍Python中的输入输出与注释教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、print 输出功能1. 基础用法2. 多参数输出3. 格式化输出4. 换行控制二、input 输入功能1. 基础用法2. 类

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.