拉钩招聘数据机器学习建模(GBDT,XGBoost,LightGBM)⑤

2023-10-22 23:00

本文主要是介绍拉钩招聘数据机器学习建模(GBDT,XGBoost,LightGBM)⑤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

boosting族算法:将一组弱学习器提升为强学习器的框架算法
以下boosting的分类:
Adaboost
GBDT
XGBoost
lightGBM

了解机器学习建模详情请戳
https://blog.csdn.net/weixin_43746433/article/details/94624103

1.GBDT

GBDT 是常用的机器学习算法之一,因其出色的特征自动组合能力和高效的运算大受欢迎。
这里简单介绍一下 GBDT 算法的原理,以及实战。

1.1 决策树的分类

决策树分为两大类,分类树和回归树。

分类树用于分类标签值,如晴天/阴天/雾/雨、用户性别、网页是否是垃圾页面;

回归树用于预测实数值,如明天的温度、用户的年龄、网页的相关程度;

1.2 两者的区别:

分类树的结果不能进行加减运算,晴天 晴天没有实际意义;
回归树的结果是预测一个数值,可以进行加减运算,例如 20 岁 3 岁=23 岁。

GBDT 中的决策树是回归树,预测结果是一个数值,在点击率预测方面常用 GBDT,例如用户点击某个内容的概率、例如明天的温度、用户的年龄等等,而且对基于回归树所得到的数值进行加减是有意义的(例如10岁+5岁-3岁=12岁),这是区别于分类树的一个显著特征(毕竟男+女=是男是女?,这样的运算是毫无道理的)。GBDT在运行时就使用到了回归树的这个性质,它将累加所有树的结果作为最终结果。所以,GBDT中的所有决策树都是回归树,而非分类树。

1.3 GBDT 概念

GBDT 的全称是 Gradient Boosting Decision Tree,梯度提升决策树。

要理解 GBDT,首先就要理解这个 B(Boosting)。

Boosting 是一族可将弱学习器提升为强学习器的算法,属于集成学习(ensemble learning)的范畴。Boosting 方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断要好。通俗地说,就是"三个臭皮匠顶个诸葛亮"的道理。

基于梯度提升算法的学习器叫做 GBM(Gradient Boosting Machine)。理论上,GBM 可以选择各种不同的学习算法作为基学习器。GBDT 实际上是 GBM 的一种情况。

为什么梯度提升方法倾向于选择决策树作为基学习器呢?(也就是 GB 为什么要和 DT 结合,形成 GBDT) 决策树可以认为是 if-then 规则的集合,易于理解,可解释性强,预测速度快。同时,决策树算法相比于其他的算法需要更少的特征工程,比如可以不用做特征标准化,可以很好的处理字段缺失的数据,也可以不用关心特征间是否相互依赖等。决策树能够自动组合多个特征。

不过,单独使用决策树算法时,有容易过拟合缺点。所幸的是,通过各种方法,抑制决策树的复杂性,降低单颗决策树的拟合能力,再通过梯度提升的方法集成多个决策树,最终能够很好的解决过拟合的问题。由此可见,梯度提升方法和决策树学习算法可以互相取长补短,是一对完美的搭档。

至于抑制单颗决策树的复杂度的方法有很多,比如限制树的最大深度、限制叶子节点的最少样本数量、限制节点分裂时的最少样本数量、吸收 bagging 的思想对训练样本采样(subsample),在学习单颗决策树时只使用一部分训练样本、借鉴随机森林的思路在学习单颗决策树时只采样一部分特征、在目标函数中添加正则项惩罚复杂的树结构等。

1.4 GBDT实战

1.4.1 观察数据
import pandas as pd
import numpy as npdf = pd.read_csv('./lagou_featured.csv', encoding='gbk')
print(df.shape)
pd.options.display.max_columns = 999
print(df.head())

在这里插入图片描述
在这里插入图片描述

1.4.2 数据准备训练集,测试集
import matplotlib.pyplot as plt
plt.hist(df['salary'])
plt.show()
X = df.drop(['salary'], axis=1).values
y = df['salary'].values.reshape((-1, 1))
#print(X.shape, y.shape)

在这里插入图片描述

1.4.3 建立GradientBoostingRegressor模型
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)#划分训练集,测试集
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)
from sklearn.ensemble import GradientBoostingRegressor
model = GradientBoostingRegressor(n_estimators = 100, max_depth = 5)
model.fit(X_train, y_train)from sklearn.metrics import mean_squared_error
y_pred = model.predict(X_test)
print(np.sqrt(mean_squared_error(y_test, y_pred)))##均方误差
print(y_pred[:10])
print(y_test[:10].flatten())
plt.plot(y_pred)
plt.plot(y_test)
plt.legend(['y_pred', 'y_test'])
plt.show()

在这里插入图片描述
效果一般,预测出中心值,无法预测两端的值

1.4.4 目标变量对数化处理
X_train, X_test, y_train, y_test = train_test_split(X, np.log(y), test_size=0.3, random_state=42)
model = GradientBoostingRegressor(n_estimators = 100, max_depth = 5)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(np.sqrt(mean_squared_error(y_test, y_pred)))
print(y_pred[:10])
print(y_test[:10].flatten())
plt.plot(np.exp(y_pred))
plt.plot(np.exp(y_test))
plt.legend(['y_pred', 'y_test'])
plt.show()

在这里插入图片描述

2.XGBoost

2.1 XGBoost

XGBoost是boosting算法的其中一种。Boosting算法的思想是将许多弱分类器集成在一起形成一个强分类器。因为XGBoost是一种提升树模型,所以它是将许多树模型集成在一起,形成一个很强的分类器。而所用到的树模型则是CART回归树模型。

该算法思想就是不断地添加树,不断地进行特征分裂来生长一棵树,每次添加一个树,其实是学习一个新函数,去拟合上次预测的残差。当我们训练完成得到k棵树,我们要预测一个样本的分数,其实就是根据这个样本的特征,在每棵树中会落到对应的一个叶子节点,每个叶子节点就对应一个分数,最后只需要将每棵树对应的分数加起来就是该样本的预测值。

2.2 Xgboost 和 GBDT 的区别:

GBDT:
GBDT 它的非线性变换比较多,表达能力强,而且不需要做复杂的特征工程和特征变换。
GBDT 的缺点也很明显,Boost 是一个串行过程,不好并行化,而且计算复杂度高,同时不太适合高维稀疏特征;
传统 GBDT 在优化时只用到一阶导数信息。

Xgboost:
它有以下几个优良的特性:

  1. 显示的把树模型复杂度作为正则项加到优化目标中。
  2. 公式推导中用到了二阶导数,用了二阶泰勒展开。(GBDT 用牛顿法貌似也是二阶信息)
  3. 实现了分裂点寻找近似算法。
  4. 利用了特征的稀疏性。
  5. 数据事先排序并且以 block 形式存储,有利于并行计算。
  6. 基于分布式通信框架 rabit,可以运行在 MPI 和 yarn 上。(最新已经不基于 rabit 了)
  7. 实现做了面向体系结构的优化,针对 cache 和内存做了性能优化。

2.3 Xgboost实战

from sklearn.model_selection import KFold
import xgboost as xgb
from sklearn.metrics import mean_squared_error
import timekf = KFold(n_splits=5, random_state=123, shuffle=True)def evalerror(preds, dtrain):labels = dtrain.get_label()return 'mse', mean_squared_error(np.exp(preds), np.exp(labels))y = np.log(y)
valid_preds = np.zeros((330, 5))time_start = time.time()for i, (train_ind, valid_ind) in enumerate(kf.split(X)):print('Fold', i+1, 'out of', 5)X_train, y_train = X[train_ind], y[train_ind]X_valid, y_valid = X[valid_ind], y[valid_ind]xgb_params = {'eta': 0.01, 'max_depth': 6, 'subsample': 0.9, 'colsample_bytree': 0.9, 'objective': 'reg:linear', 'eval_metric': 'rmse', 'seed': 99, 'silent': True}d_train = xgb.DMatrix(X_train, y_train)d_valid = xgb.DMatrix(X_valid, y_valid)watchlist = [(d_train, 'train'), (d_valid, 'valid')]model = xgb.train(xgb_params, d_train, 2000,watchlist,verbose_eval=100,
#         feval=evalerror,early_stopping_rounds=1000)
#     valid_preds[:, i] = np.exp(model.predict(d_valid))# valid_pred = valid_preds.means(axis=1)
# print('outline score:{}'.format(np.sqrt(mean_squared_error(y_pred, valid_pred)*0.5)))
print('cv training time {} seconds'.format(time.time() - time_start))

在这里插入图片描述
在这里插入图片描述

X = df.drop(['salary'], axis=1).values
y = np.log(df['salary'].values.reshape((-1, 1))).ravel()
print(type(X), type(y))

在这里插入图片描述

3.lightGBM

import lightgbm as lgb
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_errordef evalerror(preds, dtrain):labels = dtrain.get_label()return 'mse', mean_squared_error(np.exp(preds), np.exp(labels))params = {'learning_rate': 0.01,'boosting_type': 'gbdt','objective': 'regression','metric': 'mse','sub_feature': 0.7,'num_leaves': 17,'colsample_bytree': 0.7,'feature_fraction': 0.7,'min_data': 100,'min_hessian': 1,'verbose': -1,
}print('begin cv 5-fold training...')
scores = []
start_time = time.time()kf = KFold(n_splits=5, shuffle=True, random_state=27)
for i, (train_index, valid_index) in enumerate(kf.split(X)):print('Fold', i+1, 'out of', 5)X_train, y_train = X[train_index], y[train_index]X_valid, y_valid = X[valid_index], y[valid_index]lgb_train = lgb.Dataset(X_train, y_train)lgb_valid = lgb.Dataset(X_valid, y_valid)model = lgb.train(params,lgb_train,num_boost_round=2000,valid_sets=lgb_valid,verbose_eval=200,
#                feval=evalerror,early_stopping_rounds=1000)
#     feat_importance = pd.Series(model.feature_importance(), index=X.columns).sort_values(ascending=False)
#     test_preds[:, i] = model.predict(lgb_valid)
# print('outline score:{}'.format(np.sqrt(mean_squared_error(y_pred, valid_pred)*0.5)))
print('cv training time {} seconds'.format(time.time() - time_start))

在这里插入图片描述
针对于GBDT,XGBoost,LightGBM的区别,可以参考这篇文章
http://www.360doc.com/content/18/0101/17/40769523_718161675.shtml

这篇关于拉钩招聘数据机器学习建模(GBDT,XGBoost,LightGBM)⑤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/264133

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转