图详解第六篇:多源最短路径--Floyd-Warshall算法(完结篇)

2023-10-22 14:31

本文主要是介绍图详解第六篇:多源最短路径--Floyd-Warshall算法(完结篇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 多源最短路径--Floyd-Warshall算法
    • 1. 算法思想
    • 2. dist数组和pPath数组的变化
    • 3. 代码实现
    • 4. 测试观察
    • 5. 源码

前面的两篇文章我们学习了两个求解单源最短路径的算法——Dijkstra算法和Bellman-Ford算法

这两个算法都是用来求解图的单源最短路径的算法,区别在于Dijkstra算法不能求解带负权路径的图,而Bellman-Ford算法可以求解带负权路径的图,当然如果图中存在负权回路(负权环)的情况,种情况是求不出最短路径的!Bellman-Ford算法也无能为力,不过我们可以对负权回路的情况进行判定。

那这篇文章我们要再来学习一个求解多源最短路径的算法——Floyd-Warshall算法

那在前面介绍最短路径的问题的时候就已经给大家解释了什么是单源最短路径,什么是多源最短路径,我们再来回顾一下:

单源最短路径指的是从一个源节点出发,计算到其他所有节点的最短路径。也就是说,在单源最短路径问题中,只需要确定一个起点,然后计算该起点到图中所有其他节点的最短距离。
多源最短路径则是在图中计算任意两个节点之间的最短路径。换言之,需要求解所有可能的起点和终点之间的最短路径。

多源最短路径–Floyd-Warshall算法

Floyd-Warshall算法是一种解决多源最短路径问题(任意两点间的最短路径)的算法。

Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法(可以求解带负权的图)。
该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

当然:

我们前面学的Dijkstra算法和Bellman-Ford算法,它们是用来求单源最短路径的,但是我们如果以所有的顶点为起点都走一遍Dijkstra/Bellman-Ford算法的话,其实也可以得到任意两点间的最短距离。
不过呢,Dijkstra算法的话不可以求解带负权路径的图,而Bellman-Ford算法呢效率又有点低。

1. 算法思想

Floyd算法考虑的是一条最短路径的中间节点

设k是最短路径p的一个中间节点,那么从i到j的最短路径p就被分成i到k和k到j的两段最短路径p1,p2。
p1是从i到k且中间节点属于{1,2,…,k-1}取得的一条最短路径;p2是从k到j且中间节点属于{1,2,…,k-1}取得的一条最短路径
在这里插入图片描述

那它这里如何去求i到j(i,j都可以是任意顶点)最短路径p呢?

在这里插入图片描述
即Floyd算法本质是三维动态规划,D[i][j][k]表示从点i到点j只经过0到k个点最短路径,然后建立起转移方程,然后通过空间优化,优化掉最后一维度,变成一个最短路径的迭代算法,最后即得到所有点的最短路。

给大家简单解释一下上面原理中的这个公式,在动态规划中应该叫状态转移方程:

Di,j,k表示从i到j的最短路径,该路径经过的中间结点是剩余的结点组成的集合中的结点,假设经过k个结点,编号为1…k,然后这里就分为了两种情况:

  1. 如果路径经过了结点k,那么ij的距离就等于ik的距离加上kj的距离,然后剩余就经过k-1个点
  2. 如果不经过结点k,那ij的距离就等于i到j经过k-1个点(不包括k)的距离
    在这里插入图片描述
    那i到j的最短路径就等于这两种情况中的最小值
    在这里插入图片描述

2. dist数组和pPath数组的变化

然后呢在Floyd-Warshall算法中,记录最短路径距离(权值)的dist数组和记录路径(该路径经过了哪些点)的pPath数组我们就要做一些变化了:

前面的两个算法中我们的dist数组和pPath数组都是用了一个一维数组就行了。
但是Floyd-Warshall算法就不一样了,因为前两个算法算的是单源最短路径,而Floyd-Warshall算法是多源最短路径。
因为前面我们都是一个起点,然后求其它顶点到起点的最短路径;而现在是多源,即每个顶点都可以是起点,所以我们要记录每个顶点作为起点时到其它顶点的最短路径距离和路径。
那我们就需要用二维数组了。

3. 代码实现

那下面我们就来尝试写一写Floyd-Warshall算法的代码:

在这里插入图片描述
首先它就不需要给起点了,因为Floyd-Warshall算法求的是多源最短路径,每个顶点都可能是起点,我们都要求
其次,dist数组和pPath数组这里我们要用二维的(vvDist、vvpPath)
然后
在这里插入图片描述
前面的这些初始化工作就不多解释了
接着
我们要把图中所有相连的边的信息直接更新一下,因为上面我们说了那个公式叫做状态转移方程,而这里初始化更新的结果就作为起始状态,后面通过状态转移方程不断更新得到最终结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
那然后下面我们就根据状态转移方程更新就行了
在这里插入图片描述

🆗,搞定!

4. 测试观察

那下面我们再加一个打印权值和路径的二维数组的代码,因为上面那个例子也是把每一步对应的两个二维数组(矩阵)画了出来,我们可以打印(每个顶点作为中间结点更新之后的都打印一下)出来观察对比一下:

在这里插入图片描述
这段代码很简单,没什么解释的

然后我们来测试一下:

在这里插入图片描述
这个测试用例就对应上面给大家看的例子中的图
运行一下
在这里插入图片描述
当然我们这里不能像他那样横着打印

我可以给大家调整一下:

在这里插入图片描述
当然我们这里没有打印初始时的状态,所以我们从第二个开始对比。
那大家可以自己对照一下,应该是没问题的

那然后呢我们可以把所有任意两点的最短路径打印一下:

在这里插入图片描述
在这里插入图片描述
任意两点的最短路径都有。
对照一下
在这里插入图片描述
大家可以自己对照看一下,应该没什么问题。

5. 源码

void FloydWarshall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath)
{// 初始化一下记录路径和权值(距离)的数组size_t n = _vertexs.size();vvDist.resize(n);vvpPath.resize(n);for (size_t i = 0; i < n; ++i){vvDist[i].resize(n, MAX_W);vvpPath[i].resize(n, -1);}//把图中所有相连的边的信息先更新一下(初始状态)for (size_t i = 0; i < n; i++){for (size_t j = 0; j < n; j++){if (i == j){vvDist[i][j] = W();}if (_matrix[i][j] != MAX_W){vvDist[i][j] = _matrix[i][j];vvpPath[i][j] = i;}}}//按照状态转移方程更新ij的最短路径//依次遍历取图中的每个结点作为ij的中间结点去更新ij的最短路径for (size_t k = 0; k < n; k++){//k作为中间结点更新ij最短路径for (size_t i = 0; i < n; i++){for (size_t j = 0; j < n; j++){if (vvDist[i][k] != MAX_W&& vvDist[k][j] != MAX_W&& vvDist[i][k] + vvDist[k][j] < vvDist[i][j]){vvDist[i][j] = vvDist[i][k] + vvDist[k][j];vvpPath[i][j] = vvpPath[k][j];}}}// 打印权值和路径矩阵观察数据//	for (size_t i = 0; i < n; ++i)//	{//		for (size_t j = 0; j < n; ++j)//		{//			if (vvDist[i][j] == MAX_W)//			{//				//cout << "*" << " ";//				printf("%3c", '*');//			}//			else//			{//				//cout << vvDist[i][j] << " ";//				printf("%3d", vvDist[i][j]);//			}//		}//		cout << endl;//	}//	cout << endl;//	for (size_t i = 0; i < n; ++i)//	{//		for (size_t j = 0; j < n; ++j)//		{//			//cout << vvParentPath[i][j] << " ";//			printf("%3d", vvpPath[i][j]);//		}//		cout << endl;//	}//	cout << "=================================" << endl;}
}
void TestFloydWarShall()
{const char* str = "12345";Graph<char, int, INT_MAX, true> g(str, strlen(str));g.AddEdge('1', '2', 3);g.AddEdge('1', '3', 8);g.AddEdge('1', '5', -4);g.AddEdge('2', '4', 1);g.AddEdge('2', '5', 7);g.AddEdge('3', '2', 4);g.AddEdge('4', '1', 2);g.AddEdge('4', '3', -5);g.AddEdge('5', '4', 6);vector<vector<int>> vvDist;vector<vector<int>> vvpPath;g.FloydWarshall(vvDist, vvpPath);//打印任意两点之间的最短路径for (size_t i = 0; i < strlen(str); ++i){g.ptintMinPath(str[i], vvDist[i], vvpPath[i]);cout << endl;}
}

在这里插入图片描述

这篇关于图详解第六篇:多源最短路径--Floyd-Warshall算法(完结篇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/262054

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca