RGB与YCBCR颜色空间转换及python实现

2023-10-22 10:40

本文主要是介绍RGB与YCBCR颜色空间转换及python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 问题描述
  • 解决方案
  • 原理
    • 0. 图像数据表示
          • 像素的概念
          • 像素的取值及表示
          • 彩色像素
          • 图像坐标系
    • 1. 灰度值与亮度的关系
    • 2. RGB颜色空间与颜色控制
    • 3. YCbCr颜色空间及与RGB的变换关系

问题描述

在处理鱼类行为图像时,遇到这样一个问题,拍摄的鱼类视频数据,经过背景相减、中值滤波的结果如下图所示:
在这里插入图片描述
在这里插入图片描述
可以看到,由于水面光源倒影反光的问题,导致在将鱼类进行分割的时候,总是会把光源算进去,就很烦。

解决方案

在17年浙江大学赵建博士论文《循环水养殖游泳型鱼类精准投喂研究》中,提到了这样一段话:

利用背景去除法对复杂实验环境下的鱼群目标前景分割具有重要意义。图2.2为本章研究中典型的鱼群目标前景分割流程。首先,将待处理图像由RGB色彩模型(图2.2a)转化至YCbCr模型(图2.2b);其次,将Cr分量下的图片信息提取出(图2.2c),因为相对于其他分量下的纹理信息,Cr分量下鱼群前景信息与背景信息纹理差异更明显。
在这里插入图片描述

好了,问题来了,为什么“在将RGB色彩模型转化至TCbCr模型之后,相对于其他分量下的纹理信息,Cr分量下鱼群前景信息与北京信息纹理差异更明显?

原理

0. 图像数据表示

以下内容来自图像数据表示

像素的概念

图像是由很多个小格子组成的,每个小格子都只有一种颜色,这是构成图像的最小单元——像素(pixel)。

像素的取值及表示

不同的像素值代表了不同的颜色,像素值的值域一般在0到255(包括)之间,也就是256个整数,因此可以用完整个unsigned char类型的值域,所以像素值一般都是用unsigned char类型表示。

但0-255并不能映射到像上图所示的彩色,而只是对应黑色到白色之间的灰度值(grayscale),如下图:
在这里插入图片描述

彩色像素

饱和的红绿蓝三种颜色叠加起来就是白色,假如其中一种颜色不那么“饱和”则可以表示其他的颜色,调节三种颜色的比例则可以表示我们常看到的24位色。灰度值的颜色空间在几何上可以用一根直线表示,而RGB彩色空间在几何上则对应了一个立方体,如下图:

在这里插入图片描述
要表示彩色值,我们需要3个维度,也就是3个图像通道,每个像素值用3个数字表示,如(255,255,255)表示白色,(255,0,0)表示红色,(255,255,0)表示黄色。

图像坐标系

在这里插入图片描述
图片中的值用numpy的数据结构表示图像,img这个numpy.array的第一个维度沿着行方向,第二个维度沿着列方向,第三个维度沿着通道

  • img[0, :]可以表示图像的第一行所有像素
  • img[…, 0]可以表示图像的第一个通道所有像素

以下内容来自RGB与YCBCR颜色空间转换及python实现

1. 灰度值与亮度的关系

人类能够从灰度图像中获取理解场景需要的大部分信息,所以看黑白电视机并不会严重影响人对视频中场景的理解。图像的亮度和像素值成正比(越亮的话,像素值就越大),如果需要增加图像的亮度,比如从黑色逐渐过渡到白色,就可以对单通道的灰度图像素值进行增加来实现。保存灰度图像的每个像素值一般采用8个bit,像素值的范围为0-255。

下面的例子展示了灰度图像的像素值增加时亮度的变化过程,假设图像初始像素值为0:
在这里插入图片描述
上面显示了lena图像像素值增加时肤色的变化。代码的实现比较简单,读取图片,然后不断的对图像的每个像素值增加偏移量:

import numpy as np
import matplotlib.pyplot as plt
import imageio
image = imageio.imread("lena.jpg")
# 设置每次循环像素的增加量
shift = 6*np.ones(shape=(64, 64))
plt.figure()for i in range(1, 17):plt.subplot(4, 4, i)plt.imshow(image/255, cmap="gray", vmin=0, vmax=1)plt.axis("off")image = image + shift

2. RGB颜色空间与颜色控制

RGB模型在硬件设备中被广泛的使用,通过R(红色)、G(绿色)、B(蓝色)三者进行叠加可以形成更多的颜色。RGB颜色空间和后面将要进行介绍的YCbCr颜色空间和HSV颜色空间存在线性的变换关系,所以只要拥有RGB图像就能得到其它颜色空间的图像
一幅图像中R、G、B分别作为三个通道,如果某两个通道的值为0,图像的颜色就会被不为零的那个通道控制。比如:
在这里插入图片描述
实现上面的效果需要三个步骤:

(1)创建一幅3通道的空图像

(2)给3通道空图像的R通道添加一幅单通道图像

(3)给3通道图像的R通道像素值不断增加偏移量

# 1:创建一幅3通道的空图像
= np.zeros(shape=(64, 64, 3))
r = imageio.imread("lena.jpg")/2
# 2:给3通道空图像的R通道添加一幅单通道图像
image[:, :, 0] = image[:, :, 0] + r
shift = 4*np.ones(shape=(64, 64))
plt.figure()for i in range(1, 17):plt.subplot(4, 4, i)plt.imshow(image/255, vmin=0, vmax=1)plt.axis("off")# (3)给3通道图像的R通道像素值不断增加偏移量image[:, :, 0] = image[:, :, 0] + shift

但是,由于最终图像呈现出的颜色是三R\G\B三者的叠加,而现实中不仅仅是其中之一的颜色,所以很难控制最终图像的颜色,所以我们需要其它的颜色空间。

3. YCbCr颜色空间及与RGB的变换关系

YCbCr颜色空间中的Y是亮度通道,Cb是蓝色分量,Cr是红色分量。它在电视系统中比较常用,比如早期的黑白电视机使用彩色电视信号线,就可以单独使用亮度值;这种功能RGB颜色空间就做不到,因为我们不能仅仅使用RGB中某个通道作为亮度信号来使用。

由于YCbCr经常和YUV颜色空间比较相似,所以二者容易被认为是从属或者等价关系,按照维基百科的说法:YUV 是模拟信号,而YCbCr是数字信号。

YCbCr和RGB存在线性的变换关系,本文介绍的变换矩阵来自ITU.BT-601,所规定的变换矩阵Trans形式如下:
在这里插入图片描述
实现rgb2ycbcr()函数只需要两个步骤:(1)创建变换矩阵Trans;(2)遍历图像每个像素点,并对三个通道分别进行矩阵计算。下面的代码展示了如何实现从RGB空间到YCBCR变换:

def rgb2ycbcr(rgb_image):"""convert rgb into ycbcr"""if len(rgb_image.shape)!=3 or rgb_image.shape[2]!=3:raise ValueError("input image is not a rgb image")rgb_image = rgb_image.astype(np.float32)# 1:创建变换矩阵,和偏移量transform_matrix = np.array([[0.257, 0.564, 0.098],[-0.148, -0.291, 0.439],[0.439, -0.368, -0.071]])shift_matrix = np.array([16, 128, 128])ycbcr_image = np.zeros(shape=rgb_image.shape)w, h, _ = rgb_image.shape# 2:遍历每个像素点的三个通道进行变换for i in range(w):for j in range(h):ycbcr_image[i, j, :] = np.dot(transform_matrix, rgb_image[i, j, :]) + shift_matrix       return ycbcr_image

如果想要求逆变换,只需要根据矩阵求逆法则进行就可以了,需要注意的是:逆变换时偏移矩阵也需要左乘变换矩阵Trans的逆!逆变换只需要将rgb2ycbcr中的transform_matrix求逆即可,再次强调:shift_matrix也需要乘以transform_matrix的逆,而不是直接减去shift_matrix!

def ycbcr2rgb(ycbcr_image):"""convert ycbcr into rgb"""if len(ycbcr_image.shape)!=3 or ycbcr_image.shape[2]!=3:raise ValueError("input image is not a rgb image")ycbcr_image = ycbcr_image.astype(np.float32)transform_matrix = np.array([[0.257, 0.564, 0.098],[-0.148, -0.291, 0.439],[0.439, -0.368, -0.071]])transform_matrix_inv = np.linalg.inv(transform_matrix)shift_matrix = np.array([16, 128, 128])rgb_image = np.zeros(shape=ycbcr_image.shape)w, h, _ = ycbcr_image.shapefor i in range(w):for j in range(h):rgb_image[i, j, :] = np.dot(transform_matrix_inv, ycbcr_image[i, j, :]) - np.dot(transform_matrix_inv, shift_matrix)return rgb_image.astype(np.uint8)

所需要的包以及绘图代码如下,绘图用到的就是上面定义的两个函数。首先将rgb转为ycbcr,在从ycbcr转为rgb:

import numpy as np
import imageio
import matplotlib.pyplot as plt
rgb_image = imageio.imread("lena.jpg")
ycbcr_image = rgb2ycbcr(rgb_image)
cycle_image = ycbcr2rgb(ycbcr_image)
images = [rgb_image, ycbcr_image, cycle_image]
titles = ["orignal", "ycbcr", "cycle"]
for i in range(1, len(images)+1):plt.subplot(1, 3, i)plt.title(titles[i-1])plt.imshow(images[i-1]/255)

下图中左边是原始的rgb图像,中间是转换得到的ycbcr空间图像,右边是再次转回rgb空间的图像:
在这里插入图片描述
最后,对比了opencv提供的标准库的转换效果:

import cv2
rgb_image = imageio.imread("lena.jpg")
ycrcb_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2YCR_CB)
cycle_image = cv2.cvtColor(ycbcr_image, cv2.COLOR_YCR_CB2RGB)
images = [rgb_image, ycrcb_image, cycle_image]
titles = ["orignal", "ycrcb", "cycle"]
for i in range(1, len(images)+1):plt.subplot(1, 3, i)plt.title(titles[i-1])plt.imshow(images[i-1]/255)

在这里插入图片描述
原始rgb效果和cycle(重构)效果很接近,而中间结果不一致是因为opencv采用的是“ycrcb”,而不是“ycbcr”。

这篇关于RGB与YCBCR颜色空间转换及python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260893

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

Python清空Word段落样式的三种方法

《Python清空Word段落样式的三种方法》:本文主要介绍如何用python-docx库清空Word段落样式,提供三种方法:设置为Normal样式、清除直接格式、创建新Normal样式,注意需重... 目录方法一:直接设置段落样式为"Normal"方法二:清除所有直接格式设置方法三:创建新的Normal样

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3