【环境配置】YOLOX-华为Ascend-Pytorch模型离线推理【项目复盘】

本文主要是介绍【环境配置】YOLOX-华为Ascend-Pytorch模型离线推理【项目复盘】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 推理流程
        • 导出ONNX文件
        • 转换om模型
        • 测试集预处理
          • 前处理脚本
          • 生成预处理数据,得到对应的info文件
        • 离线推理
        • 精度统计
          • 后处理脚本
        • 性能对比
          • npu
          • gpu

前言
本文基于下面的参考
Ascend PyTorch模型离线推理指导

推理流程

导出ONNX文件

这一步参考官方教程

转换om模型
  1. 激活环境source env.sh
    env.sh内容见下

    # export install_path=/usr/local/Ascend/ascend-toolkit/latest
    # export install_path=/home/wgzheng/envs/Ascend/ascend-toolkit/latest
    export install_path=/home/wgzheng/packages/Ascend/ascend-toolkit/latest
    export PATH=/usr/local/python3.7.5/bin:${install_path}/atc/ccec_compiler/bin:${install_path}/atc/bin:$PATH
    export PYTHONPATH=${install_path}/atc/python/site-packages
    export LD_LIBRARY_PATH=${install_path}/atc/lib64:${install_path}/acllib/lib64
    export ASCEND_OPP_PATH=${install_path}/opp
    export ASCEND_AICPU_PATH=${install_path}
    export ASCEND_SLOG_PRINT_TO_STDOUT=0
    export ASCEND_GLOBAL_LOG_LEVEL=0
    # export DUMP_GE_GRAPH=2
    # export DUMP_GRAPH_LEVEL=2
    
  2. 执行下面的转换命令

    atc --framework=5 --model=yolox_x.onnx -output=yolox_x_fix --input_shape="images:1,3,640,640" --input_format=ND --soc_version=Ascend310 --keep_dtype=execeptionlist.cfg
    

    execeptionlist.cfg内容见下图请添加图片描述

测试集预处理
前处理脚本

preprocess.py

import os
import sys
import argparse
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from yolox.data import COCODataset, ValTransform
sys.path.append('../YOLOX-main')def main():parser = argparse.ArgumentParser(description='YOLOX Preprocess')parser.add_argument('--dataroot', dest='dataroot',help='data root dirname', default='./datasets/COCO',type=str)parser.add_argument('--output', dest='output',help='output for prepared data', default='prep_data',type=str)parser.add_argument('--batch',help='validation batch size',type=int)opt = parser.parse_args()valdataset = COCODataset(data_dir=opt.dataroot,json_file='instances_val2017.json',name="val2017",img_size = (640,640),preproc=ValTransform(legacy=False),)sampler = torch.utils.data.SequentialSampler(valdataset)dataloader_kwargs = {"num_workers": 8, "pin_memory": True, "sampler": sampler, "batch_size": opt.batch}val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)for idx, data in tqdm(enumerate(val_loader)):inps = data[0].numpy()output_name = "{:0>12d}.bin".format(idx)output_path = os.path.join('/home/wxd/CODE/YOLOX/prep_data/', output_name)inps.tofile(output_path)if __name__ == "__main__":main()

执行python preprocess.py

生成预处理数据,得到对应的info文件

gen_dataset_info.py

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.import os
import sys
import cv2
from glob import globdef get_bin_info(file_path, info_name, width, height):bin_images = glob(os.path.join(file_path, '*.bin'))with open(info_name, 'w') as file:for index, img in enumerate(bin_images):content = ' '.join([str(index), img, width, height])file.write(content)file.write('\n')def get_jpg_info(file_path, info_name):extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']image_names = []for extension in extensions:image_names.append(glob(os.path.join(file_path, '*.' + extension)))  with open(info_name, 'w') as file:for image_name in image_names:if len(image_name) == 0:continueelse:for index, img in enumerate(image_name):img_cv = cv2.imread(img)shape = img_cv.shapewidth, height = shape[1], shape[0]content = ' '.join([str(index), img, str(width), str(height)])file.write(content)file.write('\n')if __name__ == '__main__':file_type = sys.argv[1]file_path = sys.argv[2]info_name = sys.argv[3]if file_type == 'bin':width = sys.argv[4]height = sys.argv[5]assert len(sys.argv) == 6, 'The number of input parameters must be equal to 5'get_bin_info(file_path, info_name, width, height)elif file_type == 'jpg':assert len(sys.argv) == 4, 'The number of input parameters must be equal to 3'get_jpg_info(file_path, info_name)

执行python gen_dataset_info.py bin ./prep_data ./prep_bin.info 640 640

离线推理
./benchmark.x86_64 -model_type=vision -device_id=0 -batch_size=1 -om_path=yolox_x_fix.om -input_text_path=../prep_bin.info -input_width=640 -input_height=640 -output_binary=True -useDvpp=False
精度统计
后处理脚本

postprocess.py

import os
import sys
import argparse
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from yolox.data import COCODataset, ValTransform
from yolox.evaluators import COCOEvaluator
from yolox.utils.boxes import postprocessfrom yolox.utils.demo_utils import demo_postprocess,multiclass_nms
import numpy as np
sys.path.append('../YOLOX-main')def get_output_data(dump_dir,idx,dtype=np.float32):output_shape = [1,8400,85]input_file = os.path.join(dump_dir, "{:0>12d}_1.bin".format(idx))input_data = np.fromfile(input_file, dtype=dtype).reshape(output_shape)return torch.from_numpy(input_data)def main():parser = argparse.ArgumentParser(description='YOLOX Postprocess')parser.add_argument('--dataroot', dest='dataroot',help='data root dirname', default='./datasets/COCO',type=str)parser.add_argument('--dump_dir', dest='dump_dir',help='dump dir for bin files', default='./result/dumpOutput_device0/',type=str)parser.add_argument('--batch', dest='batch',help='batch for dataloader',default=1,type=int)opt = parser.parse_args()valdataset = COCODataset(data_dir=opt.dataroot,json_file='instances_val2017.json',name="val2017",img_size = (640,640),preproc=ValTransform(legacy=False),)sampler = torch.utils.data.SequentialSampler(valdataset)dataloader_kwargs = {"num_workers": 8, "pin_memory": True, "sampler": sampler, "batch_size": opt.batch}val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)data_list = []coco_evaluator = COCOEvaluator(val_loader,img_size=(640,640),confthre=0.001,nmsthre=0.65,num_classes=80)for cur_iter, (imgs, _, info_imgs, ids) in enumerate(tqdm(val_loader)):outputs = get_output_data(opt.dump_dir,cur_iter)outputs = demo_postprocess(outputs,[640,640])outputs = postprocess(outputs, num_classes=80, conf_thre=0.001, nms_thre=0.65)data_list.extend(coco_evaluator.convert_to_coco_format(outputs,info_imgs,ids))results = coco_evaluator.evaluate_prediction(data_list)print(results)if __name__ == "__main__":main()

执行python postprocess.py

性能对比

由于310上无法导出yolox在batch=16的onnx,以下是基于batch=1多脚本。

npu
/benchmark.x86_64 -round=20 -om_path=yolox_x_fix.om -device_id=0 -batch_size=1
gpu
trtexec --onnx=yolox_x.onnx --fp16 --shapes=images:1x3x640x640

这篇关于【环境配置】YOLOX-华为Ascend-Pytorch模型离线推理【项目复盘】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260858

相关文章

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

CentOS7更改默认SSH端口与配置指南

《CentOS7更改默认SSH端口与配置指南》SSH是Linux服务器远程管理的核心工具,其默认监听端口为22,由于端口22众所周知,这也使得服务器容易受到自动化扫描和暴力破解攻击,本文将系统性地介绍... 目录引言为什么要更改 SSH 默认端口?步骤详解:如何更改 Centos 7 的 SSH 默认端口1

springboot项目如何开启https服务

《springboot项目如何开启https服务》:本文主要介绍springboot项目如何开启https服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录springboot项目开启https服务1. 生成SSL证书密钥库使用keytool生成自签名证书将

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H