NLP 中文形近字相似度算法开源实现

2023-10-22 04:58

本文主要是介绍NLP 中文形近字相似度算法开源实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目简介

nlp-hanzi-similar 为汉字提供相似性的计算。

在这里插入图片描述

创作目的

有一个小伙伴说自己在做语言认知科学方向的课题研究,看了我以前写的 NLP 中文形近字相似度计算思路

就想问下有没有源码或者相关资料。

国内对于文本的相似度计算,开源的工具是比较丰富的。

但是对于两个汉字之间的相似度计算,国内基本一片空白。国内的参考的资料少的可怜,国外相关文档也是如此。

于是将以前写的相似度算法整理开源,希望能帮到这位小伙伴。

本项目旨在抛砖引玉,实现一个基本的相似度计算工具,为汉字 NLP 贡献一点绵薄之力。

特性

  • fluent 方法,一行代码搞定一切

  • 高度自定义,允许用户定义自己的实现

  • 词库自定义,适应各种应用场景

  • 丰富的实现策略

默认实现了基于 四角编码+拼音+汉字结构+汉字偏旁+笔画数 的相似度比较。

变更日志

变更日志

快速开始

需要

jdk1.7+

maven 3.x+

maven 引入

<dependency><groupId>com.github.houbb</groupId><artifactId>nlp-hanzi-similar</artifactId><version>1.0.0</version>
</dependency>

快速开始

基本用法

HanziSimilarHelper.similar 获取两个汉字的相似度。

double rate1 = HanziSimilarHelper.similar('末', '未');

结果为:

0.9629629629629629

自定义权重

默认是根据 四角编码+拼音+汉字结构+汉字偏旁+笔画数 进行相似度比较。

如果默认的系统权重无法满足你的需求,你可以通过自定义权重调整:

double rate = HanziSimilarBs.newInstance().jiegouRate(10).sijiaoRate(8).bushouRate(6).bihuashuRate(2).pinyinRate(1).similar('末', '未');

自定义相似度

有些情况下,系统的计算是无法满足的。

用户可以在根目录下 hanzi_similar_define.txt 进行自定义。

入人 0.9
人入 0.9

这样在计算 的相似度时,会优先以用户自定义的为准。

double rate = HanziSimilarHelper.similar('人', '入');

此时的结果为用户自定义的值。

引导类

说明

为了便于用户自定义,HanziSimilarBs 支持用户进行自定义配。

HanziSimilarBs 中允许自定义的配置列表如下:

序号属性说明
1bihuashuRate笔画数权重
2bihuashuData笔画数数据
3bihuashuSimilar笔画数相似度策略
4jiegouRate结构权重
5jiegouData结构数据
6jiegouSimilar结构相似度策略
7bushouRate部首权重
8bushouData部首数据
9bushouSimilar部首相似度策略
10sijiaoRate四角编码权重
12sijiaoData四角编码数据
13sijiaoSimilar四角编码相似度策略
14pinyinRate拼音权重
15pinyinData拼音数据
16pinyinSimilar拼音相似度策略
17hanziSimilar汉字相似度核心策略
18userDefineData用户自定义数据

所有的配置都可以基于接口,用户进行自定义。

快速体验

说明

如果 java 语言不是你的主要开发语言,你可以通过下面的 exe 文件快速体验一下。

下载地址

https://github.com/houbb/nlp-hanzi-similar/releases/download/exe/hanzi-similar.zip

下载后直接解压得到 hanzi-similar.exe 免安装的可执行文件。

执行效果

界面是使用 java swing 实现的,所以美观什么的,已经完全放弃治疗 T_T。

使用 exe4j 打包。

字符一输入一个汉字,字符二输入另一个汉字,点击计算,则可以获取对应的相似度。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Co86EgTm-1637587412203)(similar-execute.png)]

字典的弊端

这个项目开源,是因为有一位小伙伴有相关的需求,但是他不懂 java。

一开始想把项目设计成为字典的形式,两个字对应一个相似度。

但是有一个问题,2W 汉字,和 2W 汉字的相似度字典,数量已经是近亿的数据量。

空间复杂度过高,同时会导致时间复杂度问题。

所以目前采用的是实时计算,有时间做一下其他语言的迁移 😃

实现原理

实现思路

不同于文本相似度,汉字相似度的单位是汉字。

所以相似度是对于汉字的拆解,比如笔画,拼音,部首,结构等。

推荐阅读:

NLP 中文形近字相似度计算思路

计算思路描述了实现的原理,但是小伙伴反应不会实现,于是才有了本项目。

核心代码

核心实现如下,就是各种相似度,进行加权计算。

/*** 相似度** @param context 上下文* @return 结果* @since 1.0.0*/
@Override
public double similar(final IHanziSimilarContext context) {final String charOne = context.charOne();final String charTwo = context.charTwo();//1. 是否相同if(charOne.equals(charTwo)) {return 1.0;}//2. 是否用户自定义Map<String, Double> defineMap = context.userDefineData().dataMap();String defineKey = charOne+charTwo;if(defineMap.containsKey(defineKey)) {return defineMap.get(defineKey);}//3. 通过权重计算获取//3.1 四角编码IHanziSimilar sijiaoSimilar = context.sijiaoSimilar();double sijiaoScore = sijiaoSimilar.similar(context);//3.2 结构IHanziSimilar jiegouSimilar = context.jiegouSimilar();double jiegouScore = jiegouSimilar.similar(context);//3.3 部首IHanziSimilar bushouSimilar = context.bushouSimilar();double bushouScore = bushouSimilar.similar(context);//3.4 笔画IHanziSimilar biahuashuSimilar = context.bihuashuSimilar();double bihuashuScore = biahuashuSimilar.similar(context);//3.5 拼音IHanziSimilar pinyinSimilar = context.pinyinSimilar();double pinyinScore = pinyinSimilar.similar(context);//4. 计算总分double totalScore = sijiaoScore + jiegouScore + bushouScore + bihuashuScore + pinyinScore;//4.1 避免浮点数比较问题if(totalScore <= 0) {return 0;}//4.2 正则化double limitScore = context.sijiaoRate() + context.jiegouRate()+ context.bushouRate() + context.bihuashuRate() + context.pinyinRate();return totalScore / limitScore;
}

具体的细节,如果感兴趣,可以自行阅读源码。

开源地址

为了便于大家的学习和使用,本项目已开源。

开源地址:

https://github.com/houbb/nlp-hanzi-similar

欢迎大家,fork&star 鼓励一下老马~

算法的优缺点

优点

为数不多的几篇 paper 是从汉字的结构入手的。

本算法引入了四角编码+结构+部首+笔画+拼音的方式,使其更加符合国内的使用直觉。

缺点

部首这部分因为当时数据问题,实际上是有缺憾的。

后续准备引入拆字字典,对汉字的所有组成部分进行对比,而不是目前一个简单的部首。

后期 Road-MAP

  • 丰富相似度策略

  • 优化默认权重

  • 优化 exe 界面

在这里插入图片描述

这篇关于NLP 中文形近字相似度算法开源实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/259161

相关文章

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1