标准图数据

2023-10-21 23:40
文章标签 数据 标准图

本文主要是介绍标准图数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一、节点分类

1. BA-Shapes:单图,包括一个300节点的Barabasi-Albert(BA)子图和80个“房子”图案,这些图案被随机的加在BA图的节点上,并且加入随机边进行干扰。
该图没有节点特征。节点在基本图上是类型0,在“房子”的顶部,中部,底部分别为类型1-3.

 2.BA-community:包含两个BA图(社区),每一个BA图的节点特征符合高斯分布,根据不同社区的不同成员身份总共分成8个类
 

 3. Tree-Cycles:二分树作为基图,80个6节点循环图被附加于基本图随机节点上。
 

 4. Tree-Grid:基本图与Tree-Cycles类似,但用3×3的网络图代替循环图。

 二、 图分类
1. BA-2motifs dataset:800个子图,采用BA图为基图,一半的附加图为“房子”图案,其余是附有5节点的循环图案(根据附加图的不同,可分为2种类型的图)

 2. MUTAG(真实图):由4337个分子图组成,根据诱变效应分为两类。碳环中含有NH2和NO2原子团被认为是有诱变性的,而没有诱变性的分子也含有碳环。因此,我们可以将碳环作为基本图(共有图),将NH2和NO2原子团作为突变基图的基序(附加图,判据图)

 

三、评估指标
1、定性评估:在上面的图示中,黑边表示具有重要权重的边(按top-k排序)。并且可以明显地看出高权重边被赋予BA-Shapes和BA-Community的“house”图,Tree-Cycles和BA-2motifs的循环图,Tree-Grid的网格图,以及MUTAG的NO2原子团。
2、定量评估:此处将解释问题量化为边的二元分类。将重要图案的边视为正性边,否则为负性边。解释方法所得出的重要性权重被视为预测得分。较好的解释方法是赋予真实重要图案的边较高的权重,采用AUC作为定量评估的指标。特别地,对于MUTAG数据集,只考虑诱导图,因为非诱导图不存在明显的诱变原子团。
每个实验重复10次,得出AUC的平均值和标准差。

PGExplainer利用图生成模型的参数化解释网络,对多个实例共同提供解释。因此,PGExplainer可以拥有gnn的全局视图,这就解释了为什么PGExplainer可以比GNNExplainer表现得更好。

(38条消息) 模型评估指标AUC(area under the curve)_Webbley的博客-CSDN博客_auc值

3、效率评估:PGExplainer的解释网络可以在所有实例中共享(权值),因此,一个训练后的PGExplainer可以用来解释归纳设置中的新实例。用推理时间标识解释器解释一个新实例的时间,由于GNNExplainer必须对模型进行再训练,所以相比之下,PGExplainer大幅度降低推理时间,其计算效率是GNNExplainer的108倍,因此,PGExplainer更适合大规模数据。
4、归纳评估:
1)AUC随着训练实例的增加而增加。
2)训练的实例数越多,标准差越小,PGExplainer更倾向于全局检测共享图案,鲁班性更高。
3)PGExplainer只需要少量的训练实例就能取得相对较好的性能。

 5、图大小和交叉熵约束性能

6、连通约束:
该类约束指的是更多的边会约束在重要节点上。下图可以看出,通过连通约束,PGExplainer更倾向于提供一个连通子图作为解释图。

 
7、特征选择:可以参考GNNExplainer做特征掩码。

这篇关于标准图数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/257693

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本