【LeetCode:2316. 统计无向图中无法互相到达点对数 | BFS + 乘法原理】

本文主要是介绍【LeetCode:2316. 统计无向图中无法互相到达点对数 | BFS + 乘法原理】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域新星创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述

在这里插入图片描述

🍔 目录

    • 🚩 题目链接
    • ⛲ 题目描述
    • 🌟 求解思路&实现代码&运行结果
      • ⚡ BFS+ 乘法原理
        • 🥦 求解思路
        • 🥦 实现代码
        • 🥦 运行结果
    • 💬 共勉

🚩 题目链接

  • 2316. 统计无向图中无法互相到达点对数

⛲ 题目描述

给你一个整数 n ,表示一张 无向图 中有 n 个节点,编号为 0 到 n - 1 。同时给你一个二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示节点 ai 和 bi 之间有一条 无向 边。

请你返回 无法互相到达 的不同 点对数目 。

在这里插入图片描述

在这里插入图片描述

提示:

1 <= n <= 105
0 <= edges.length <= 2 * 105
edges[i].length == 2
0 <= ai, bi < n
ai != bi
不会有重复边。

🌟 求解思路&实现代码&运行结果


⚡ BFS+ 乘法原理

🥦 求解思路
  1. 题目让我们求解是从找到所有无法互相到达的不同点对数目,我们可以先找到每一个连通块的节点个数cnt,因为一共是n个节点,所以,剩下的不能到达的节点个数就是(n-cnt),所以,当前连通块中所有节点不能到达其它节点的个数是cnt * (n-cnt)-乘法原理。因为这只是一个连通块,其它情况类似,遍历下去,找到所有情况。
  2. 具体实现的时候,我们需要先建无向图,然后通过bfs求解,同时需要维护vis访问的节点的数组,避免重复访问。
  3. 最后,因为每个节点双向计算了两次。我们需要将结果/2来得到最终的结果。
  4. 具体求解的过程步骤请看下面代码。
🥦 实现代码
class Solution {public long countPairs(int n, int[][] edges) {long ans=0;ArrayList<Integer>[] list=new ArrayList[n]; Arrays.setAll(list,e->new ArrayList<>());for(int[] edge:edges){int from=edge[0],to=edge[1];list[from].add(to);list[to].add(from);}Queue<Integer> queue=new LinkedList<>();boolean[] vis=new boolean[n];Arrays.fill(vis,false);for(int i=0;i<n;i++){if(!vis[i]){queue.add(i);vis[i]=true;int cnt=0;while(!queue.isEmpty()){int size=queue.size();for(int j=0;j<size;j++){int cur=queue.poll();cnt++;for(int node:list[cur]){if(!vis[node]){queue.add(node);vis[node]=true;}}}}ans+=(long)(n-cnt)*cnt;}}return ans/2;}
}
🥦 运行结果

在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

这篇关于【LeetCode:2316. 统计无向图中无法互相到达点对数 | BFS + 乘法原理】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/257022

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、