【LeetCode:2316. 统计无向图中无法互相到达点对数 | BFS + 乘法原理】

本文主要是介绍【LeetCode:2316. 统计无向图中无法互相到达点对数 | BFS + 乘法原理】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域新星创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述

在这里插入图片描述

🍔 目录

    • 🚩 题目链接
    • ⛲ 题目描述
    • 🌟 求解思路&实现代码&运行结果
      • ⚡ BFS+ 乘法原理
        • 🥦 求解思路
        • 🥦 实现代码
        • 🥦 运行结果
    • 💬 共勉

🚩 题目链接

  • 2316. 统计无向图中无法互相到达点对数

⛲ 题目描述

给你一个整数 n ,表示一张 无向图 中有 n 个节点,编号为 0 到 n - 1 。同时给你一个二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示节点 ai 和 bi 之间有一条 无向 边。

请你返回 无法互相到达 的不同 点对数目 。

在这里插入图片描述

在这里插入图片描述

提示:

1 <= n <= 105
0 <= edges.length <= 2 * 105
edges[i].length == 2
0 <= ai, bi < n
ai != bi
不会有重复边。

🌟 求解思路&实现代码&运行结果


⚡ BFS+ 乘法原理

🥦 求解思路
  1. 题目让我们求解是从找到所有无法互相到达的不同点对数目,我们可以先找到每一个连通块的节点个数cnt,因为一共是n个节点,所以,剩下的不能到达的节点个数就是(n-cnt),所以,当前连通块中所有节点不能到达其它节点的个数是cnt * (n-cnt)-乘法原理。因为这只是一个连通块,其它情况类似,遍历下去,找到所有情况。
  2. 具体实现的时候,我们需要先建无向图,然后通过bfs求解,同时需要维护vis访问的节点的数组,避免重复访问。
  3. 最后,因为每个节点双向计算了两次。我们需要将结果/2来得到最终的结果。
  4. 具体求解的过程步骤请看下面代码。
🥦 实现代码
class Solution {public long countPairs(int n, int[][] edges) {long ans=0;ArrayList<Integer>[] list=new ArrayList[n]; Arrays.setAll(list,e->new ArrayList<>());for(int[] edge:edges){int from=edge[0],to=edge[1];list[from].add(to);list[to].add(from);}Queue<Integer> queue=new LinkedList<>();boolean[] vis=new boolean[n];Arrays.fill(vis,false);for(int i=0;i<n;i++){if(!vis[i]){queue.add(i);vis[i]=true;int cnt=0;while(!queue.isEmpty()){int size=queue.size();for(int j=0;j<size;j++){int cur=queue.poll();cnt++;for(int node:list[cur]){if(!vis[node]){queue.add(node);vis[node]=true;}}}}ans+=(long)(n-cnt)*cnt;}}return ans/2;}
}
🥦 运行结果

在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

这篇关于【LeetCode:2316. 统计无向图中无法互相到达点对数 | BFS + 乘法原理】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/257022

相关文章

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Oracle修改端口号之后无法启动的解决方案

《Oracle修改端口号之后无法启动的解决方案》Oracle数据库更改端口后出现监听器无法启动的问题确实较为常见,但并非必然发生,这一问题通常源于​​配置错误或环境冲突​​,而非端口修改本身,以下是系... 目录一、问题根源分析​​​二、保姆级解决方案​​​​步骤1:修正监听器配置文件 (listener.

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

VS配置好Qt环境之后但无法打开ui界面的问题解决

《VS配置好Qt环境之后但无法打开ui界面的问题解决》本文主要介绍了VS配置好Qt环境之后但无法打开ui界面的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目UKeLvb录找到Qt安装目录中designer.UKeLvBexe的路径找到vs中的解决方案资源

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事