Python爬取寻医问药网得到每个疾病的诱因和诱因上下位

2023-10-21 19:40

本文主要是介绍Python爬取寻医问药网得到每个疾病的诱因和诱因上下位,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python爬取寻医问药网得到每个疾病的诱因和诱因上下位

  • Python爬取寻医问药网得到每个疾病的诱因和诱因上下位
    • 分析流程
    • 代码
      • 导包
      • getHTMLText(url)
      • main()
      • processAPart(ch,path)
      • processAnIllness(eachUrl,path)
      • getFileName(path,soup)
      • getAppositions(soup)
      • getHypernymHyponym(soup)
      • processPTextForSubtitle(text)
      • processASubtitle(text,key)
      • processASentence(str)
      • getSentence(str,key)
      • cutToPreviousComma(str,end)
      • cutToBothComma(str,keyPos)
      • ContainsNoImpurity(string)
      • ifConcat(ch)
      • notDigit(ch)
    • 各个函数间的关系和流程图
      • 各函数间关系
      • 获取小标题
      • 获取文本中诱因上下位

Python爬取寻医问药网得到每个疾病的诱因和诱因上下位

通过爬取寻医问药网的所有疾病,获取与筛选符合条件的每个疾病病因页面下相关的小标题(即诱因小标题)以及页面中基于诱因关键字,根据关键字前的语义分析是否提取子句以及如何提取子句(即文本中的诱因上下位)。

整个过程比较简单,说白了就是if else的嵌套和对整个流程的宏观把控。其中有些像分词什么的都是用的现成的python库。
本次作业是我大二的时候第一次接触爬虫写的,推荐视频:
Python网络爬虫与信息提取 北京理工大学:嵩天
看完前面33p就可以开始了。

结果大致是这样的:
程序运行结果和原文对比声明:本博客只作学习记录与交流用,不做任何盈利用途。

分析流程

1.到寻医问药网的疾病查询页面按字母查询获取到所有疾病的分区
2.在每个字母分区的页面中获取到该字母打头的所有疾病
3.转到每个疾病的病因页面
4.对于小标题:由于疾病很多,每一页病因的代码参次不齐,因此需要分情况提取
4.1在strong、b、h3这三个标签中有小标题的情况:
4.1.1直接获取这三个标题,然后判断是否满足要求,如发病病因,发病机制等这类标题需要过滤掉
4.2整个病因页面的文本仅仅只是一个p标签的情况(此情况比较复杂):
4.2.1创建一个标志词列表(后期可以发现更新),如(一)1.(1)①等
4.2.2对于整个文本从位置0开始查找是否含有标志词中的任一个
4.2.3含有则执行提取句子操作(同时需要判断句子是否满足提取条件如3.2%这类就不提取,因为3.在这里是数字,不是标题序号),还需要进行判断提取结束位置
4.2.4将提取标志词从文本中移除,再次从文本0开始查找,重复直到文本不再含有标志序号
5.对于文本中诱因关键字的上下位:
5.1创建一个诱因关键字的列表,如引起、导致、致使等等
5.2将整个p标签的文本利用python的zhon库进行中文分句
5.3再创建一个标志列表(里面放jieba分词的词性结果是实意动词的标志,如n,v,a,nt,ns等等)
5.4分别处理中文分句得到的句子:
5.4.1如果关键词前是虚词或者‘,’,则从关键字开始判断是否到提取边界,此类情况需要提取整个句子。
5.4.2如果关键词前到标点除(即关键词所在子句中关键词前部分),含有实意动词,如动词,名词等等,则从关键字开始判断是否到提取边界,此类情况需要提取分句即可。
6.将上面两个结果进行检查后拼串并输出写入文本

代码

导包

import requests
from bs4 import BeautifulSoup
import re#正则表达式
import bs4
import zhon#中文分句
from zhon import hanzi
import jieba.posseg as pseg #词性标注
import string
import os#建文件等

getHTMLText(url)

    try:kv={'user-agent':'Mozilla/5.0'}r=requests.get(url,timeout=30,headers=kv)#伪装成浏览器r.raise_for_status()#异常处理r.encoding=r.apparent_encoding#编码设置return r.text#返回文本except:return "产生异常"

main()

main函数,依次处理每个按字母分区的疾病病因,输出并建立文件夹在G盘根目录下

def main():path='E:/数据分析与可视化/'if not os.path.exists(path):os.makedirs(path)for ch in 'abcdefghijklmnopqrstuvwxyz':try:processAPart(ch,path)except OSError:passcontinue
if __name__ == '__main__':main()

processAPart(ch,path)

处理一个字母分区

def processAPart(ch,path):url='http://jib.xywy.com/html/'+ch+'.html'r=getHTMLText(url)soup=BeautifulSoup(r,"html.parser")for li in soup.find_all('ul','ks-zm-list clearfix mt10'):if isinstance(li,bs4.element.Tag):for a in li.find_all('a'):if isinstance(a,bs4.element.Tag):eachUrl='{}{}'.format('http://jib.xywy.com/il_sii/cause/',a.attrs['href'][8:])processAnIllness(eachUrl,path)

processAnIllness(eachUrl,path)

处理一个疾病病因,输出小标题间同位关系和文本内容中诱因上下位关系

	r=getHTMLText(url)soup=BeautifulSoup(r,"html.parser")path=getFileName(path,soup)string=getAppositions(soup)string='{0}{1}{2}'.format(string,'\n',getHypernymHyponym(soup))print(string)f=open(path,"w",encoding='utf-8')f.write(string)f.close

getFileName(path,soup)

给文件命名为病的名字

    for title in soup.find_all('strong','fb db f20 fYaHei fb jib-articl-tit tc'):if isinstance(title,bs4.element.Tag):T='{}'.format(title.string) for ch in T:if ch is not ' ' and ch is not '\t' and ch is not '\n' and ch is not '//' and ch is not '\\': path='{}{}'.format(path,ch)path='{}{}'.format(path,'.txt')return path

getAppositions(soup)

得到同位关系

def getAppositions(soup):string=''for tag in soup.find_all('div','jib-articl fr f14 jib-lh-articl'):if isinstance(tag,bs4.element.Tag):#这一页的标题,xxx病因,在strong标签里for strong in tag.find_all('strong',recursive=False):#排除发病病因发病机制等字样if isinstance(tag,bs4.element.Tag) and ContainsNoImpurity(strong.string):if strong.string is not None:string='{0}{1}'.format(string,strong.string)#主要内容就在这一个p标签里for p in tag.find_all('p'):if isinstance(p,bs4.element.Tag) :#小标题在h3标签里,有的页面还在b标签里for h3 in p.find_all('h3'):if isinstance(h3,bs4.element.Tag) and  ContainsNoImpurity(h3.text):string='{0}{1}'.format(string,h3.text)for b in p.find_all('b',recursive=False):if isinstance(b,bs4.element.Tag) and ContainsNoImpurity(b.string):string='{0}{1}{2}'.format(string,'\n',b.string)if isinstance(p,bs4.element.Tag):#有的页面的小标题还在strong标签for strong in p.find_all('strong',recursive=False):if isinstance(p,bs4.element.Tag):if strong.string is not None and ContainsNoImpurity(strong.string):string='{0}{1}{2}'.format(string,'\n',strong.string)return string

getHypernymHyponym(soup)

得到诱因上下位

string=''for tag in soup.find_all('div','jib-articl fr f14 jib-lh-articl'):if isinstance(tag,bs4.element.Tag):for p in tag.find_all('p',recursive=False):rst = re.findall(zhon.hanzi.sentence, p.text)res=processPTextForSubtitle(p.text)string='{0}{1}{2}'.format(string,res,'\n')string='{0}{1}'.format(string,'\n----------------上方为诱因小标题间的同位概念,下方为诱因上下位关系--------------\n')for str in rst:res=processASentence(str)if res is not None:string='{0}{1}{2}'.format(string,res,'\n')return string

processPTextForSubtitle(text)

在p标签里的小标题

def processPTextForSubtitle(text):#尽可能多的列出来小标题关键字string=''#序号必须按这个顺序排keys=['(一)','(二)','(三)','1、','2、','3、','4、','1.','2.','3.','4.','5.','6.','7.','(1)','①','②','(2)','(3)','(4)','(5)','(6)','(7)','①','②']flag=0i=0while i < len(keys):if text.find(keys[i],0,len(text)) is not -1:#包含标志if notDigit(text[text.find(keys[i],0,len(text))+2] ):res=processASubtitle(text,keys[i])#print(res)if res is not None:string='{0}{1}{2}'.format(string,res,'\n')flag=text.find(keys[i],0,len(text))+1text='{0}{1}'.format(text[:flag-1],text[flag+1:])#把这个标志从文本中剔除i=i-1i=i+1return string

processASubtitle(text,key)

处理小标题

def processASubtitle(text,key):string=''pos=text.find(key)text=text[pos:]#print(text)for ch in text:if ifConcat(ch):string+=chelse:min=8if min>len(string):min=len(string)if ContainsNoImpurity(string[:min]):if len(string)<100:return stringelse:return string[:100]

processASentence(str)

处理分句后的句子,如果存在诱因关键词则开始提取句子

def processASentence(str):keys=['引发','引起','可导致','导致','致使','致','使','有关','因为','原因','病因','诱因','因','诱发','影响']for word in keys:if str.find(word) != -1:return getSentence(str,word)

getSentence(str,key)

对于有诱因关键词的句子,先利用jieba分词判断是否有实意词,有则提取子句,无则返回整个句子

def getSentence(str,key):part=cutToPreviousComma(str,str.find(key))words=pseg.cut(part)notionals=['n','v','a','nt','ns','nr','an','vn','vg','nz','Ng','ad','Ag','s','vd','j']#这些都是实意词的标志for word,flag in words:if flag in notionals:#前面是实词,仅提取子句return cutToBothComma(str,str.find(key))#前面是情态动词,副词,连词,介词等虚词或者标点符号,提取整个句子return str

cutToPreviousComma(str,end)

从诱因关键词往前开始截取到标点符号处,前面没有标点符号就截取到str[0]用于判断诱因关键词前面是否有虚词

def cutToPreviousComma(str,end):start=endwhile start >= 1:#是汉字if '\u4e00' <= str[start] <= '\u9fff':start=start-1else:return str[start:end]return str[start:end]#这句别忘了,因为可能key前面是标点,那样就会返回none

cutToBothComma(str,keyPos)

对于前面有实意词的情况,截取子句

start=keyPosend=keyPoswhile end < len(str):if '\u4e00' <= str[end] <= '\u9fff':end=end+1else:breakwhile start >= 1:if '\u4e00' <= str[start] <= '\u9fff':start=start-1else:breakreturn str[start:end]

ContainsNoImpurity(string)

过滤杂质,排除发病病因发病机制等字样

flags=['其他','其它','发病','病因','病理生理','剖析']for flag in flags:if string is not None:if string.find(flag) is not -1:return Falsereturn True

ifConcat(ch)

判断是否到句子截取停止标志

flags=[':',':',' ',',',',','。','\n',',']for flag in flags:if ch == flag:return Falsereturn True

notDigit(ch)

排除是数字百分比的情况

    for flag in '0123456789':if ch ==flag:return Falsereturn True

各个函数间的关系和流程图

各函数间关系

各函数间关系

获取小标题

获取小标题

获取文本中诱因上下位

获取文本中诱因上下位

这篇关于Python爬取寻医问药网得到每个疾病的诱因和诱因上下位的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/256541

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数