C++前缀和算法的应用:从仓库到码头运输箱子原理、源码、测试用例

本文主要是介绍C++前缀和算法的应用:从仓库到码头运输箱子原理、源码、测试用例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
双指针
单调双向队列

题目

你有一辆货运卡车,你需要用这一辆车把一些箱子从仓库运送到码头。这辆卡车每次运输有 箱子数目的限制 和 总重量的限制 。
给你一个箱子数组 boxes 和三个整数 portsCount, maxBoxes 和 maxWeight ,其中 boxes[i] = [ports​​i​, weighti] 。
ports​​i 表示第 i 个箱子需要送达的码头, weightsi 是第 i 个箱子的重量。
portsCount 是码头的数目。
maxBoxes 和 maxWeight 分别是卡车每趟运输箱子数目和重量的限制。
箱子需要按照 数组顺序 运输,同时每次运输需要遵循以下步骤:
卡车从 boxes 队列中按顺序取出若干个箱子,但不能违反 maxBoxes 和 maxWeight 限制。
对于在卡车上的箱子,我们需要 按顺序 处理它们,卡车会通过 一趟行程 将最前面的箱子送到目的地码头并卸货。如果卡车已经在对应的码头,那么不需要 额外行程 ,箱子也会立马被卸货。
卡车上所有箱子都被卸货后,卡车需要 一趟行程 回到仓库,从箱子队列里再取出一些箱子。
卡车在将所有箱子运输并卸货后,最后必须回到仓库。
请你返回将所有箱子送到相应码头的 最少行程 次数。
示例 1:
输入:boxes = [[1,1],[2,1],[1,1]], portsCount = 2, maxBoxes = 3, maxWeight = 3
输出:4
解释:最优策略如下:

  • 卡车将所有箱子装上车,到达码头 1 ,然后去码头 2 ,然后再回到码头 1 ,最后回到仓库,总共需要 4 趟行程。
    所以总行程数为 4 。
    注意到第一个和第三个箱子不能同时被卸货,因为箱子需要按顺序处理(也就是第二个箱子需要先被送到码头 2 ,然后才能处理第三个箱子)。
    示例 2:
    输入:boxes = [[1,2],[3,3],[3,1],[3,1],[2,4]], portsCount = 3, maxBoxes = 3, maxWeight = 6
    输出:6
    解释:最优策略如下:
  • 卡车首先运输第一个箱子,到达码头 1 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第二、第三、第四个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第五个箱子,到达码头 2 ,回到仓库,总共 2 趟行程。
    总行程数为 2 + 2 + 2 = 6 。
    示例 3:
    输入:boxes = [[1,4],[1,2],[2,1],[2,1],[3,2],[3,4]], portsCount = 3, maxBoxes = 6, maxWeight = 7
    输出:6
    解释:最优策略如下:
  • 卡车运输第一和第二个箱子,到达码头 1 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第三和第四个箱子,到达码头 2 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第五和第六个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
    总行程数为 2 + 2 + 2 = 6 。
    示例 4:
    输入:boxes = [[2,4],[2,5],[3,1],[3,2],[3,7],[3,1],[4,4],[1,3],[5,2]], portsCount = 5, maxBoxes = 5, maxWeight = 7
    输出:14
    解释:最优策略如下:
  • 卡车运输第一个箱子,到达码头 2 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第二个箱子,到达码头 2 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第三和第四个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第五个箱子,到达码头 3 ,然后回到仓库,总共 2 趟行程。
  • 卡车运输第六和第七个箱子,到达码头 3 ,然后去码头 4 ,然后回到仓库,总共 3 趟行程。
  • 卡车运输第八和第九个箱子,到达码头 1 ,然后去码头 5 ,然后回到仓库,总共 3 趟行程。
    总行程数为 2 + 2 + 2 + 2 + 3 + 3 = 14 。

提示:
1 <= boxes.length <= 105
1 <= portsCount, maxBoxes, maxWeight <= 105
1 <= ports​​i <= portsCount
1 <= weightsi <= maxWeight

可理解行强的解法

如果有多种运输的boxs[0,i)的方式,只需要保留行程最少的方式,且只需要记录最小行程,此值用m_vRet[i]记录。分成两步:第一步,运输box[0,j),第二步运输[j,i)。一次可以运输完成,可以看成第一步是box[0,0)。枚举i,j的时间复杂度都是O(n),总时间复杂度是O(n*n)。

利用前缀和计算[j,i)的箱子总重量

vWeightSum[i],记录了boxs[0,i)的重中立,vWeightSum[i]-vWeightSum[j]。

利用前缀和计算[i,j)需要单独下车的次数

vDownSum[i]记录[0,i)需要单独下车的次数。vDown[j]-vDownSum[i]。和前面的箱子不同,则需要单独下车。

优化枚举

m_vRet[i] = min(…,X) X=m_vRet[j]+1 + 1 + vDown[j+1,i)。 1+1 表示返程和下第一箱子,从第二个箱子起要计算要单独下。X = m_vRet[j]+1+1+vDown[i] - vDown[j+1] ,令 Y= m_vRet[j]-vDow[j+1],则X=Y + 2 + vDown[i] ,显然Y可以提前计算。每次处理完i,将Y记录到setPre中。setPre对应的索引为[left,i),如果[left,i)超量或超重,则left++,并更新setPre。

时间复杂度

枚举i,时间复杂度。二分查找setPre,时间复杂度O(logn),总时间复杂度O(nlogn)。

核心代码

class Solution {
public:
int boxDelivering(vector<vector>& boxes, int portsCount, int maxBoxes, int maxWeight) {
m_c = boxes.size();
m_vRet.resize(m_c+1);//记录boxes[0,i) 需的最小行程数
vector vWeightSum = { 0 };//箱子重量前缀和
for (const auto& v : boxes)
{
vWeightSum.emplace_back(v[1] + vWeightSum.back());
}
vector vDownSum = { 0,0 };//假定不是本车的第一个箱子,卸货需要的次数
for (int i = 1; i < m_c; i++)
{
vDownSum.emplace_back(vDownSum.back() + (boxes[i][0] != boxes[i-1][0]));
}
std::multiset setPre = { 0 }; //记录可以作为前一趟的最小行程数-vDownSum[i + 1]
int left = 0;//[left,i)是上一趟的行程
for (int i = 1; i <= m_c; i++)
{
// [left,i)为空,不会超重,也不会超量。所以无需判断是否为空
while ((i - left > maxBoxes) || (vWeightSum[i] - vWeightSum[left] > maxWeight))
{
//如果[left,i)超重或超亮
const int tmp = m_vRet[left ] - vDownSum[left+1 ];
setPre.erase(setPre.find(tmp));
left++;
}
m_vRet[i ] = *setPre.begin() + 2 + vDownSum[i] ;
if (i + 1 <= m_c)
{
setPre.emplace(m_vRet[i] - vDownSum[i + 1]);
}
}
return m_vRet.back();
}
int m_c;
vector m_vRet;
};

测试用例

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}

template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}

int main()
{
vector<vector> boxes = { {1,1},{2,1},{1,1} };
int portsCount = 2, maxBoxes = 3, maxWeight = 3;
auto res = Solution().boxDelivering(boxes, portsCount, maxBoxes, maxWeight);
Assert(4, res);
boxes = { {1,2},{3,3},{3,1},{3,1},{2,4} };
portsCount = 3, maxBoxes = 3, maxWeight =6;
res = Solution().boxDelivering(boxes, portsCount, maxBoxes, maxWeight);
Assert(6, res);
boxes = { {2,4},{2,5},{3,1},{3,2},{3,7},{3,1},{4,4},{1,3},{5,2} };
portsCount = 5, maxBoxes = 5, maxWeight = 7;
res = Solution().boxDelivering(boxes, portsCount, maxBoxes, maxWeight);
Assert(14, res);

//CConsole::Out(res);

}

优化二:单调双向队列

原理

setPre的旧值如果大于等于新值,则被淘汰了。这意味着值是按升序排序的。移除值有两种原因:一,旧值比新值大,被淘汰。从容器尾淘汰。二,旧值超重或超过数量了,从容器头淘汰。所以用双向队列。

代码

class Solution {
public:
int boxDelivering(vector<vector>& boxes, int portsCount, int maxBoxes, int maxWeight) {
m_c = boxes.size();
m_vRet.resize(m_c+1);//记录boxes[0,i) 需的最小行程数
vector vWeightSum = { 0 };//箱子重量前缀和
for (const auto& v : boxes)
{
vWeightSum.emplace_back(v[1] + vWeightSum.back());
}
vector vDownSum = { 0,0 };//假定不是本车的第一个箱子,卸货需要的次数
for (int i = 1; i < m_c; i++)
{
vDownSum.emplace_back(vDownSum.back() + (boxes[i][0] != boxes[i-1][0]));
}
std::deque<pair<int, int>> mSumJ = { { 0,0} };
for (int i = 1; i <= m_c; i++)
{
// [left,i)为空,不会超重,也不会超量。所以无需判断是否为空
while (mSumJ.size() &&((i - mSumJ.front().second > maxBoxes) || (vWeightSum[i] - vWeightSum[mSumJ.front().second] > maxWeight)))
{
//如果[left,i)超重或超亮
mSumJ.pop_front();
}
m_vRet[i ] = mSumJ.front().first + 2 + vDownSum[i] ;
if (i + 1 > m_c)
{
continue;
}
const int iNew = m_vRet[i] - vDownSum[i + 1];
while (mSumJ.size() && (mSumJ.back().first >= iNew))
{
mSumJ.pop_back();
}
mSumJ.emplace_back(iNew, i);
}
return m_vRet.back();
}
int m_c;
vector m_vRet;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

鄙人想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
墨家名称的来源:有所得以墨记之。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境:

VS2022 C++17

这篇关于C++前缀和算法的应用:从仓库到码头运输箱子原理、源码、测试用例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/255665

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的