【甘道夫】Mapreduce实现矩阵乘法的算法思路

2023-10-21 10:30

本文主要是介绍【甘道夫】Mapreduce实现矩阵乘法的算法思路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        大数据计算中经常会遇到矩阵乘法计算问题,所以Mapreduce实现矩阵乘法是重要的基础知识,下文我尽量用通俗的语言描述该算法。

        1.首先回顾矩阵乘法基础

         矩阵A和B可以相乘的前提是,A的列数和B的行数相同,因为乘法结果的矩阵C中每一个元素Cij,是A的第i行和B的第j列做点积运算的结果,参见下图:

         

         

         2.进入正题

         在了解了矩阵乘法规则后,我们打算采用分布式计算模型Mapreduce来完成这一过程。

         MR过程是在Hadoop集群的多台机器上同时进行的,所以能MR化的计算必须是没有前后关系、相互独立的过程。通过分析上述矩阵乘法过程我们可以发现,其实C矩阵的每一个元素的计算过程都是相互独立的,比如C11和C21的计算不会相互影响,可以同时进行。

         所以,我们的目标就转变为:通过MR计算每一个C矩阵元素Cij。

         针对以上目标我们进一步分析,Cij其实就是A矩阵的第i行和B矩阵的第j列的点积,所以我们只要能最终将参与计算Cij的所有元素(A矩阵的第i行和B矩阵的第j列)都归到一组来参与计算就能算出Cij。这个所谓的“归到一组”,结合MR模型和矩阵乘法规则,其实就是Map将这些元素输出为相同的Key---C矩阵中元素的坐标,然后通过Shuffle就能把所有相同Key的元素输入到Reduce中,由Reduce来进行点积运算,得出该C元素最终的值。

         OK,上面的思路都看明白后,我们回到输入数据,即A和B两个矩阵,我们只需要将矩阵中的每个元素处理一下(该过程需要在Map中进行),根据每一个元素即将参与哪些Cij的计算,为每一个元素打上(i,j)坐标即可,这样最终这些元素就会被shuffle到目标Cij的计算数据源分组中。

         具体举例,A12,会参与到C11,C12的计算中;B22会参与到C12,C22的计算中。所以,我们从A和B的元素坐标,就完全可以得知它们即将参与计算的C元素的坐标。注意,这里是一对多的,每个A或者B的元素都会参与多个C元素的计算,如果不明白请再看第一遍矩阵乘法规则。

        

        通过以上的分析,对于一个i行j列的A矩阵,和j行k列的B矩阵乘法:

        我们将每个Aij元素处理为如下格式:

        key=i,n(n=1,2,3...k)      value='a','j',aij

        我们将每个Bjk处理为如下格式:

        key= m,k(m=1,2,3...i)    value='b',


        上面这个格式可能很多人看得痛苦,我就再唠叨两句,拿A12来举例,参见下图:

        

        A12最终会参与C11,C12的计算,所以我们处理A12时需将其处理为两个{key,value}对:

        {(1,1),('a' , 2 , 2)}           /*  (1,1)是A12将参与计算的C11的坐标;'a'代表该数据来自A矩阵,因为A和B需要相乘,所以需要做一个标志位;头一个2代表这是计算C11时对应A向量的坐标,因为要知道A向量的第几个元素和B向量的第几个元素相乘;最后一个2就是当前元素的值  */

        {(1,2),('a' , 2 , 2)}           /*  参考以上描述  */

        这么解释都看不懂,就自己面壁去哈!


        OK,Map过程结束,所有参与Cij的的A、B元素都shuffle到同一个Reduce了,Reduce的算法思路就简单了,通过标志位区分数据来源(A或B)创建数组,然后两个数组做点积即可。


这篇关于【甘道夫】Mapreduce实现矩阵乘法的算法思路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253780

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统