神经网络硬件加速器-DPU分析

2023-10-21 07:59

本文主要是介绍神经网络硬件加速器-DPU分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 DPU概述

       DPU是专为卷积神经网络优化的可编程引擎,其使用专用指令集,支持诸多卷积神经网络的有效实现。

 1、关键模块

  • 卷积引擎:常规CONV等
  • ALU:DepthwiseConv
  • Scheduler:指令调度分发
  • Buffer Group:片上数据缓存
  • Data Mover:高速数据通道

 2、特性

 3、工作流程

  • 阶段一:上电后,DPU将指令从外部DRAM加载到片上,译码并分发至各个模块;并根据指令通过DMA将相应权重和输入特征图加载至片上缓存
  • 阶段二:计算引擎根据调度算法将所需数据加载至计算阵列中,通过并行计算引擎完成计算任务
  • 阶段三:       一旦完成当。前层计算任务,则需要将输出特征图通过DMA写回片外DRAM,然后开启下一层计算任务。进而实现整个网络的逐层加速计算

二 设计分析

       DPU通过组合多种并行度来搭配多种卷积架构,DPU卷积架构包括三个维度的并行度:像素并行度/输入通道并行度/输出通道并行度(通常输入通道并行度=输出通道并行度)。

 1、并行度

  • 像素并行度:PP

  • 输入通道并行度:ICP

  • 输出通道并行度:OCP

 2、计算模式

数据排布格式猜测大致为:NHWC

计算模式:

  • 1 优先复用输入通道:计算卷积时每次将部分输入特征图从外部缓存读到FPGA片上缓存,卷积计算时优先复用输入特征图,计算尽可能多的输出通道结果,避免计算不同输出通道时多次加载这部分特征图。
  • 2 然后复用输出通道:基于1,每次计算尽可能多的计算输出通道,因片上缓存资源受限,通常无法一次计算玩所有输出通道,这里需要配合调度优先计算剩余的输出通道。
  • 3 采用输出复用方法:输出数据复用对输出缓存具有最少的访问次数,计算过程中,将累加的中间结果保存在片上,直到全部结果累加结束再存回片外。

 3、架构设计

DPU计算架构设计如下图红色方框部分

 CONV计算阵列:计算阵列包括P个PE,每个PE用于完成1个输出像素计算,P个PE完成P个并行像素的卷积计算;每个PE包含OCP个计算阵列,每个计算阵列包含ICP个MACs,分别完成输出通道并行/输出通道并行的卷积计算。

单个计算阵列中包含多个乘法器单元,加法树,非线性计算采用流水线方式设计,通过复制OCP个并行流水线,完成OCP并行度的输出通道卷积运算。也包含任意尺寸的池化、逐元素、尺寸变换、全连接等

 Memory POOL:缓存池根据相关专利,为统一缓存池,与传统的输入缓冲区-计算核阵列-输出缓存区结构不同,其采用统一的缓存池,多通道数据读写调度单元设计。DPU根据不同网络不同层的特点,动态申请、分配来使用相应的缓存空间,最大化利用片上缓存资源。

卷积计算单元和ALU可以脱离顺序执行的流水线限制而彼此独立,同时可以保证各计算单元的数据吞吐率,有效提升计算模块的灵活性和并行度。

 4、指令集

DPU采用多指令多数据流架构,包含指令类型如下:

  • LOAD:数据加载
  • SAVE:数据缓存
  • CONV:卷积计算,包括常规卷积/转置卷积等
  • MISC:逐通道卷积等

具有以下特点:

  • 不同类别指令并行执行
  • 相同类别指令串行执行
  • 不同类别指令间存在相互依赖
  • 依赖关系不应存在死锁

指令优化:

  • 将访存和计算并行,提高计算单元利用率
  • 通过调整tile策略和大小,优化系统访存

指令字段包括:操作码(区分不同指令类型)、依赖码(不同类型指令集安存在并行可能性)、指令参数(具体指令功能描述)

待补充。。。

三 参考文献

[1] 深鉴相关专利

[2] 清华大学NICS-EFC组相关paper

[3]XILINX DPU相关datasheet

这篇关于神经网络硬件加速器-DPU分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253033

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

linux配置podman阿里云容器镜像加速器详解

《linux配置podman阿里云容器镜像加速器详解》本文指导如何配置Podman使用阿里云容器镜像加速器:登录阿里云获取专属加速地址,修改Podman配置文件并移除https://前缀,最后拉取镜像... 目录1.下载podman2.获取阿里云个人容器镜像加速器地址3.更改podman配置文件4.使用po

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、