linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建

本文主要是介绍linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建

下学期要学tensorflow,看着我可怜的1050ti,流下了贫穷的泪水,但无奈要做实验啊,学还是得学的,安装过程记录一下,仅供参考

关于manjaro

之前写过一篇怎么安装manjaro的文章来着,虽然manjaro在国内不是大众发行版,但在尝试过诸多linux后,我最终留在了manjaro.

双显卡驱动

我的驱动,直接上图
驱动

Anaconda

一开始我尝试用pacman直接安装tf cuda cudnn等,很简单

tf CPU
sudo pacman -S python-tensorflow-opt
tf GPU
sudo pacman -S python-tensorflow-opt-cuda cuda cudnn

但是GUP版装好之后运行测试会报
RuntimeError: cuda runtime error (35) : CUDA driver version is insufficient for CUDA runtime version at …
原因:CUDA驱动版本不满足CUDA运行版本。
具体显卡驱动与CUDA版本对应见下
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
在这里插入图片描述
我的是440xx 而软件库中提供的是cuda11

不想换驱动,那就给 cuda 和 tf 降级

conda安装

sudo pacman -S anacondaconda -h

如果有conda:命令未找到的报错,就需要修改一下环境变量

export PATH=$PATH:/opt/anaconda/bin

CUDA CUDNN

conda install cudatoolkit=10.1 cudnn=7.6 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

tensorflow2.1

conda create -n tf2-gpu tensorflow-gpu==2.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

装好后,检查环境

conda env list# conda environments:
#
tf2-gpu                  $home/.conda/envs/tf2-gpu
base                  *  /opt/anaconda
进入环境并测试

与win不同,linux进入conda环境要使用source activate,退出则是conda deactivate
要进入刚才搭建的tf2的环境只需要输入source activate tf2-gpu

source activate tf2-gpu(tf2-gpu) git clone https://hub.fastgit.org/guangfuhao/Deeplearning(tf2-gpu) cd Deeplearning(tf2-gpu) cp mnist.npz <你的测试目录>(tf2-gpu) pip install matplotlib numpy

编辑测试程序,很短就用vim test.py,注意将这个test.py与之前下载的mnist.npz放到同一目录下

测试程序
# 1.Import the neccessary libraries needed
import numpy as np
import tensorflow as tf
import matplotlib
from matplotlib import pyplot as plt######################################################################### 2.Set default parameters for plots
matplotlib.rcParams['font.size'] = 20
matplotlib.rcParams['figure.titlesize'] = 20
matplotlib.rcParams['figure.figsize'] = [9, 7]
matplotlib.rcParams['font.family'] = ['STKaiTi']
matplotlib.rcParams['axes.unicode_minus'] = False########################################################################
# 3.Initialize Parameters# Initialize learning rate
lr = 1e-3
# Initialize loss array
losses = []
# Initialize the weights layers and the bias layers
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))######################################################################### 4.Import the minist dataset by numpy offlinedef load_mnist():# define the directory where mnist.npz is(Please watch the '\'!)path = r'./mnist.npz'f = np.load(path)x_train, y_train = f['x_train'], f['y_train']x_test, y_test = f['x_test'], f['y_test']f.close()return (x_train, y_train), (x_test, y_test)(train_image, train_label), _ = load_mnist()
x = tf.convert_to_tensor(train_image, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(train_label, dtype=tf.int32)
# Reshape x from [60k, 28, 28] to [60k, 28*28]
x = tf.reshape(x, [-1, 28*28])######################################################################### 5.Combine x and y as a tuple and batch them
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
'''
#Encapsulate train_db as an iterator object
train_iter = iter(train_db)
sample = next(train_iter)
'''######################################################################### 6.Iterate database for 20 times
for epoch in range(20):# For every batch:x:[128, 28*28],y: [128]for step, (x, y) in enumerate(train_db):with tf.GradientTape() as tape:  # tf.Variable# x: [b, 28*28]# h1 = x@w1 + b1# [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256]h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])h1 = tf.nn.relu(h1)# [b, 256] => [b, 128]h2 = h1@w2 + b2h2 = tf.nn.relu(h2)# [b, 128] => [b, 10]out = h2@w3 + b3# y: [b] => [b, 10]y_onehot = tf.one_hot(y, depth=10)# compute loss# mse = mean(sum(y-out)^2)# [b, 10]loss = tf.square(y_onehot - out)# mean: scalarloss = tf.reduce_mean(loss)# compute gradientsgrads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])# Update the weights and the biasw1.assign_sub(lr * grads[0])b1.assign_sub(lr * grads[1])w2.assign_sub(lr * grads[2])b2.assign_sub(lr * grads[3])w3.assign_sub(lr * grads[4])b3.assign_sub(lr * grads[5])if step % 100 == 0:print(epoch, step, 'loss:', float(loss))losses.append(float(loss))######################################################################### 7.Show the change of losses via matplotlib
plt.figure()
plt.plot(losses, color='C0', marker='s', label='训练')
plt.xlabel('Epoch')
plt.legend()
plt.ylabel('MSE')
# Save figure as '.svg' file
# plt.savefig('forward.svg')
plt.show()
python3 test.py

不出意外会有类似的输出
在这里插入图片描述
最后画出一张图
在这里插入图片描述

ps: 如何优雅的监控GPU
watch -n 1 nvidia-smi

在这里插入图片描述
好了,环境搭建大功告成
在我的机器上这个过程是成立的,如果有什么疑问欢迎在评论区留言

这篇关于linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/252970

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断