linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建

本文主要是介绍linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建

下学期要学tensorflow,看着我可怜的1050ti,流下了贫穷的泪水,但无奈要做实验啊,学还是得学的,安装过程记录一下,仅供参考

关于manjaro

之前写过一篇怎么安装manjaro的文章来着,虽然manjaro在国内不是大众发行版,但在尝试过诸多linux后,我最终留在了manjaro.

双显卡驱动

我的驱动,直接上图
驱动

Anaconda

一开始我尝试用pacman直接安装tf cuda cudnn等,很简单

tf CPU
sudo pacman -S python-tensorflow-opt
tf GPU
sudo pacman -S python-tensorflow-opt-cuda cuda cudnn

但是GUP版装好之后运行测试会报
RuntimeError: cuda runtime error (35) : CUDA driver version is insufficient for CUDA runtime version at …
原因:CUDA驱动版本不满足CUDA运行版本。
具体显卡驱动与CUDA版本对应见下
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
在这里插入图片描述
我的是440xx 而软件库中提供的是cuda11

不想换驱动,那就给 cuda 和 tf 降级

conda安装

sudo pacman -S anacondaconda -h

如果有conda:命令未找到的报错,就需要修改一下环境变量

export PATH=$PATH:/opt/anaconda/bin

CUDA CUDNN

conda install cudatoolkit=10.1 cudnn=7.6 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

tensorflow2.1

conda create -n tf2-gpu tensorflow-gpu==2.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

装好后,检查环境

conda env list# conda environments:
#
tf2-gpu                  $home/.conda/envs/tf2-gpu
base                  *  /opt/anaconda
进入环境并测试

与win不同,linux进入conda环境要使用source activate,退出则是conda deactivate
要进入刚才搭建的tf2的环境只需要输入source activate tf2-gpu

source activate tf2-gpu(tf2-gpu) git clone https://hub.fastgit.org/guangfuhao/Deeplearning(tf2-gpu) cd Deeplearning(tf2-gpu) cp mnist.npz <你的测试目录>(tf2-gpu) pip install matplotlib numpy

编辑测试程序,很短就用vim test.py,注意将这个test.py与之前下载的mnist.npz放到同一目录下

测试程序
# 1.Import the neccessary libraries needed
import numpy as np
import tensorflow as tf
import matplotlib
from matplotlib import pyplot as plt######################################################################### 2.Set default parameters for plots
matplotlib.rcParams['font.size'] = 20
matplotlib.rcParams['figure.titlesize'] = 20
matplotlib.rcParams['figure.figsize'] = [9, 7]
matplotlib.rcParams['font.family'] = ['STKaiTi']
matplotlib.rcParams['axes.unicode_minus'] = False########################################################################
# 3.Initialize Parameters# Initialize learning rate
lr = 1e-3
# Initialize loss array
losses = []
# Initialize the weights layers and the bias layers
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))######################################################################### 4.Import the minist dataset by numpy offlinedef load_mnist():# define the directory where mnist.npz is(Please watch the '\'!)path = r'./mnist.npz'f = np.load(path)x_train, y_train = f['x_train'], f['y_train']x_test, y_test = f['x_test'], f['y_test']f.close()return (x_train, y_train), (x_test, y_test)(train_image, train_label), _ = load_mnist()
x = tf.convert_to_tensor(train_image, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(train_label, dtype=tf.int32)
# Reshape x from [60k, 28, 28] to [60k, 28*28]
x = tf.reshape(x, [-1, 28*28])######################################################################### 5.Combine x and y as a tuple and batch them
train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
'''
#Encapsulate train_db as an iterator object
train_iter = iter(train_db)
sample = next(train_iter)
'''######################################################################### 6.Iterate database for 20 times
for epoch in range(20):# For every batch:x:[128, 28*28],y: [128]for step, (x, y) in enumerate(train_db):with tf.GradientTape() as tape:  # tf.Variable# x: [b, 28*28]# h1 = x@w1 + b1# [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256]h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])h1 = tf.nn.relu(h1)# [b, 256] => [b, 128]h2 = h1@w2 + b2h2 = tf.nn.relu(h2)# [b, 128] => [b, 10]out = h2@w3 + b3# y: [b] => [b, 10]y_onehot = tf.one_hot(y, depth=10)# compute loss# mse = mean(sum(y-out)^2)# [b, 10]loss = tf.square(y_onehot - out)# mean: scalarloss = tf.reduce_mean(loss)# compute gradientsgrads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])# Update the weights and the biasw1.assign_sub(lr * grads[0])b1.assign_sub(lr * grads[1])w2.assign_sub(lr * grads[2])b2.assign_sub(lr * grads[3])w3.assign_sub(lr * grads[4])b3.assign_sub(lr * grads[5])if step % 100 == 0:print(epoch, step, 'loss:', float(loss))losses.append(float(loss))######################################################################### 7.Show the change of losses via matplotlib
plt.figure()
plt.plot(losses, color='C0', marker='s', label='训练')
plt.xlabel('Epoch')
plt.legend()
plt.ylabel('MSE')
# Save figure as '.svg' file
# plt.savefig('forward.svg')
plt.show()
python3 test.py

不出意外会有类似的输出
在这里插入图片描述
最后画出一张图
在这里插入图片描述

ps: 如何优雅的监控GPU
watch -n 1 nvidia-smi

在这里插入图片描述
好了,环境搭建大功告成
在我的机器上这个过程是成立的,如果有什么疑问欢迎在评论区留言

这篇关于linux(manjaro) tensorflow2.1 conda cuda10 双显卡笔记本深度学习环境搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/252970

相关文章

在Linux系统上连接GitHub的方法步骤(适用2025年)

《在Linux系统上连接GitHub的方法步骤(适用2025年)》在2025年,使用Linux系统连接GitHub的推荐方式是通过SSH(SecureShell)协议进行身份验证,这种方式不仅安全,还... 目录步骤一:检查并安装 Git步骤二:生成 SSH 密钥步骤三:将 SSH 公钥添加到 github

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Oracle数据库定时备份脚本方式(Linux)

《Oracle数据库定时备份脚本方式(Linux)》文章介绍Oracle数据库自动备份方案,包含主机备份传输与备机解压导入流程,强调需提前全量删除原库数据避免报错,并需配置无密传输、定时任务及验证脚本... 目录说明主机脚本备机上自动导库脚本整个自动备份oracle数据库的过程(建议全程用root用户)总结

Linux如何查看文件权限的命令

《Linux如何查看文件权限的命令》Linux中使用ls-R命令递归查看指定目录及子目录下所有文件和文件夹的权限信息,以列表形式展示权限位、所有者、组等详细内容... 目录linux China编程查看文件权限命令输出结果示例这里是查看tomcat文件夹总结Linux 查看文件权限命令ls -l 文件或文件夹

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方