bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】

2023-10-21 05:40

本文主要是介绍bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

在参与的项目和产品中,涉及到模型和算法的需求,主要以自然语言处理(NLP)和知识图谱(KG)为主。NLP涉及面太广,而聚焦在具体场景下,想要生产落地的还需要花很多功夫。
作为NLP的主要方向,情感分析,文本多分类,实体识别等已经在项目中得到应用。例如
通过实体识别,抽取文本中提及到的公司、个人以及金融产品等。
通过情感分析,判别新闻资讯,对其提到的公司和个人是否利好?
通过文本多分类,判断资讯是否是高质量?判断资讯的行业和主题?
具体详情再找时间分享。而文本生成、序列到序列(Sequence to Sequence)在机器翻译、问答系统、聊天机器人中有较广的应用,在参与的项目中暂无涉及,本文主要通过tensorflow+bert+seq2seq实现一个简单的问答模型,旨在对seq2seq的了解和熟悉。

数据

关于seq2seq的demo数据有很多,例如小黄鸡聊天语料库,影视语料库,翻译语料库等等。由于最近总是做些奇怪的梦,便想着,做一个AI解梦的应用玩玩,just for fun。
通过采集从网上采集周公解梦数据,通过清洗,形成
dream:梦境;
decode:梦境解析结果。
这样的序列对,总计33000+ 条记录。数据集下载地址:后台回复“解梦”
{
"dream": "梦见商人或富翁",
"decode": "是个幸运的预兆,未来自己的事业很有机会成功,不过如果梦中的富翁是自己,则是一个凶兆。。"
}

模型准备

#下载 bert
$ git clone https://github.com/google-research/bert.git
#下载中文预训练模型
$ wget -c https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
$ unzip chinese_L-12_H-768_A-12.zip 

bert 的input:

self.input_ids = tf.placeholder(dtype=tf.int32,shape=[None, None],name="input_ids"
)
self.input_mask = tf.placeholder(dtype=tf.int32,shape=[None, None],name="input_mask"
)
self.segment_ids = tf.placeholder(dtype=tf.int32,shape=[None, None],name="segment_ids"
)
self.dropout = tf.placeholder(dtype=tf.float32,shape=None,name="dropout"
)

bert 的model :

self.bert_config = modeling.BertConfig.from_json_file(bert_config)model = modeling.BertModel(config=self.bert_config,is_training=self.is_training,input_ids=self.input_ids,input_mask=self.input_mask,token_type_ids=self.segment_ids,use_one_hot_embeddings=False)

seq2seq 的encoder_embedding 替换:

# 默认seq2seq model_inputs
# self.encoder_embedding = tf.Variable(tf.random_uniform([from_dict_size, embedded_size], -1, 1),name ="encoder_embedding")
# self.model_inputs = tf.nn.embedding_lookup(self.encoder_embedding, self.X),
#  替换成bert
self.embedded = model.get_sequence_output()
self.model_inputs = tf.nn.dropout(self.embedded, self.dropout)

seq2seq 的decoder_embedding 替换:

# 默认seq2seq decoder_embedding
# self.decoder_embedding = tf.Variable(tf.random_uniform([to_dict_size, embedded_size], -1, 1),name="decoder_embedding")
#  替换成bert
self.decoder_embedding = model.get_embedding_table()
self.decoder_input = tf.nn.embedding_lookup(self.decoder_embedding, decoder_input),

数据预处理

for i in range(len(inputs)):tokens = inputs[i]inputs_ids = model.tokenizer.convert_tokens_to_ids(inputs[i])segment_ids = [0] * len(inputs_ids)input_mask = [1] * len(inputs_ids)tag_ids = model.tokenizer.convert_tokens_to_ids(outputs[i])data.append([tokens, tag_ids, inputs_ids, segment_ids, input_mask])def pad_data(data):c_data = copy.deepcopy(data)max_x_length = max([len(i[0]) for i in c_data])max_y_length = max([len(i[1]) for i in c_data]) # 这里生成的序列的tag-id 和 input-id 长度要分开# print("max_x_length : {} ,max_y_length : {}".format( max_x_length,max_y_length))padded_data = []for i in c_data:tokens, tag_ids, inputs_ids, segment_ids, input_mask = itag_ids = tag_ids + (max_y_length - len(tag_ids)) * [0]# 注意tag-ids 的长度补充,和预测的序列长度一致。inputs_ids = inputs_ids + (max_x_length - len(inputs_ids)) * [0]segment_ids = segment_ids + (max_x_length - len(segment_ids)) * [0]input_mask = input_mask + (max_x_length - len(input_mask)) * [0]assert len(inputs_ids) == len(segment_ids) == len(input_mask)padded_data.append([tokens, tag_ids, inputs_ids, segment_ids, input_mask])return padded_data

训练

$ python3 model.py --task=train \--is_training=True \--epoch=100 \--size_layer=256 \--bert_config=chinese_L-12_H-768_A-12/bert_config.json \--vocab_file=chinese_L-12_H-768_A-12/vocab.txt \--num_layers=2 \--learning_rate=0.001 \--batch_size=16 \--checkpoint_dir=result

image

预测

$ python3 model.py --task=predict \--is_training=False \--epoch=100 \--size_layer=256 \--bert_config=chinese_L-12_H-768_A-12/bert_config.json \--vocab_file=chinese_L-12_H-768_A-12/vocab.txt \--num_layers=2 \--learning_rate=0.001 \--batch_size=16 \--checkpoint_dir=result

image

Just For Fun ^_^

本文代码: https://github.com/saiwaiyanyu/tensorflow-bert-seq2seq-dream-decoder

作者:saiwaiyanyu
链接:https://juejin.im/post/5dd9e07b51882572f00c4523
来源:掘金

8

本文由博客一文多发平台 OpenWrite 发布!

这篇关于bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/252320

相关文章

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

MySQL 筛选条件放 ON后 vs 放 WHERE 后的区别解析

《MySQL筛选条件放ON后vs放WHERE后的区别解析》文章解释了在MySQL中,将筛选条件放在ON和WHERE中的区别,文章通过几个场景说明了ON和WHERE的区别,并总结了ON用于关... 今天我们来讲讲数据库筛选条件放 ON 后和放 WHERE 后的区别。ON 决定如何 "连接" 表,WHERE

Mybatis的mapper文件中#和$的区别示例解析

《Mybatis的mapper文件中#和$的区别示例解析》MyBatis的mapper文件中,#{}和${}是两种参数占位符,核心差异在于参数解析方式、SQL注入风险、适用场景,以下从底层原理、使用场... 目录MyBATis 中 mapper 文件里 #{} 与 ${} 的核心区别一、核心区别对比表二、底

Agent开发核心技术解析以及现代Agent架构设计

《Agent开发核心技术解析以及现代Agent架构设计》在人工智能领域,Agent并非一个全新的概念,但在大模型时代,它被赋予了全新的生命力,简单来说,Agent是一个能够自主感知环境、理解任务、制定... 目录一、回归本源:到底什么是Agent?二、核心链路拆解:Agent的"大脑"与"四肢"1. 规划模

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关

Springboot主配置文件解析

《Springboot主配置文件解析》SpringBoot主配置文件application.yml支持多种核心值类型,包括字符串、数字、布尔值等,文章详细介绍了Profile环境配置和加载位置,本文... 目录Profile环境配置配置文件加载位置Springboot主配置文件 application.ym

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node