bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】

2023-10-21 05:40

本文主要是介绍bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

在参与的项目和产品中,涉及到模型和算法的需求,主要以自然语言处理(NLP)和知识图谱(KG)为主。NLP涉及面太广,而聚焦在具体场景下,想要生产落地的还需要花很多功夫。
作为NLP的主要方向,情感分析,文本多分类,实体识别等已经在项目中得到应用。例如
通过实体识别,抽取文本中提及到的公司、个人以及金融产品等。
通过情感分析,判别新闻资讯,对其提到的公司和个人是否利好?
通过文本多分类,判断资讯是否是高质量?判断资讯的行业和主题?
具体详情再找时间分享。而文本生成、序列到序列(Sequence to Sequence)在机器翻译、问答系统、聊天机器人中有较广的应用,在参与的项目中暂无涉及,本文主要通过tensorflow+bert+seq2seq实现一个简单的问答模型,旨在对seq2seq的了解和熟悉。

数据

关于seq2seq的demo数据有很多,例如小黄鸡聊天语料库,影视语料库,翻译语料库等等。由于最近总是做些奇怪的梦,便想着,做一个AI解梦的应用玩玩,just for fun。
通过采集从网上采集周公解梦数据,通过清洗,形成
dream:梦境;
decode:梦境解析结果。
这样的序列对,总计33000+ 条记录。数据集下载地址:后台回复“解梦”
{
"dream": "梦见商人或富翁",
"decode": "是个幸运的预兆,未来自己的事业很有机会成功,不过如果梦中的富翁是自己,则是一个凶兆。。"
}

模型准备

#下载 bert
$ git clone https://github.com/google-research/bert.git
#下载中文预训练模型
$ wget -c https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
$ unzip chinese_L-12_H-768_A-12.zip 

bert 的input:

self.input_ids = tf.placeholder(dtype=tf.int32,shape=[None, None],name="input_ids"
)
self.input_mask = tf.placeholder(dtype=tf.int32,shape=[None, None],name="input_mask"
)
self.segment_ids = tf.placeholder(dtype=tf.int32,shape=[None, None],name="segment_ids"
)
self.dropout = tf.placeholder(dtype=tf.float32,shape=None,name="dropout"
)

bert 的model :

self.bert_config = modeling.BertConfig.from_json_file(bert_config)model = modeling.BertModel(config=self.bert_config,is_training=self.is_training,input_ids=self.input_ids,input_mask=self.input_mask,token_type_ids=self.segment_ids,use_one_hot_embeddings=False)

seq2seq 的encoder_embedding 替换:

# 默认seq2seq model_inputs
# self.encoder_embedding = tf.Variable(tf.random_uniform([from_dict_size, embedded_size], -1, 1),name ="encoder_embedding")
# self.model_inputs = tf.nn.embedding_lookup(self.encoder_embedding, self.X),
#  替换成bert
self.embedded = model.get_sequence_output()
self.model_inputs = tf.nn.dropout(self.embedded, self.dropout)

seq2seq 的decoder_embedding 替换:

# 默认seq2seq decoder_embedding
# self.decoder_embedding = tf.Variable(tf.random_uniform([to_dict_size, embedded_size], -1, 1),name="decoder_embedding")
#  替换成bert
self.decoder_embedding = model.get_embedding_table()
self.decoder_input = tf.nn.embedding_lookup(self.decoder_embedding, decoder_input),

数据预处理

for i in range(len(inputs)):tokens = inputs[i]inputs_ids = model.tokenizer.convert_tokens_to_ids(inputs[i])segment_ids = [0] * len(inputs_ids)input_mask = [1] * len(inputs_ids)tag_ids = model.tokenizer.convert_tokens_to_ids(outputs[i])data.append([tokens, tag_ids, inputs_ids, segment_ids, input_mask])def pad_data(data):c_data = copy.deepcopy(data)max_x_length = max([len(i[0]) for i in c_data])max_y_length = max([len(i[1]) for i in c_data]) # 这里生成的序列的tag-id 和 input-id 长度要分开# print("max_x_length : {} ,max_y_length : {}".format( max_x_length,max_y_length))padded_data = []for i in c_data:tokens, tag_ids, inputs_ids, segment_ids, input_mask = itag_ids = tag_ids + (max_y_length - len(tag_ids)) * [0]# 注意tag-ids 的长度补充,和预测的序列长度一致。inputs_ids = inputs_ids + (max_x_length - len(inputs_ids)) * [0]segment_ids = segment_ids + (max_x_length - len(segment_ids)) * [0]input_mask = input_mask + (max_x_length - len(input_mask)) * [0]assert len(inputs_ids) == len(segment_ids) == len(input_mask)padded_data.append([tokens, tag_ids, inputs_ids, segment_ids, input_mask])return padded_data

训练

$ python3 model.py --task=train \--is_training=True \--epoch=100 \--size_layer=256 \--bert_config=chinese_L-12_H-768_A-12/bert_config.json \--vocab_file=chinese_L-12_H-768_A-12/vocab.txt \--num_layers=2 \--learning_rate=0.001 \--batch_size=16 \--checkpoint_dir=result

image

预测

$ python3 model.py --task=predict \--is_training=False \--epoch=100 \--size_layer=256 \--bert_config=chinese_L-12_H-768_A-12/bert_config.json \--vocab_file=chinese_L-12_H-768_A-12/vocab.txt \--num_layers=2 \--learning_rate=0.001 \--batch_size=16 \--checkpoint_dir=result

image

Just For Fun ^_^

本文代码: https://github.com/saiwaiyanyu/tensorflow-bert-seq2seq-dream-decoder

作者:saiwaiyanyu
链接:https://juejin.im/post/5dd9e07b51882572f00c4523
来源:掘金

8

本文由博客一文多发平台 OpenWrite 发布!

这篇关于bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/252320

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima