bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】

2023-10-21 05:40

本文主要是介绍bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

在参与的项目和产品中,涉及到模型和算法的需求,主要以自然语言处理(NLP)和知识图谱(KG)为主。NLP涉及面太广,而聚焦在具体场景下,想要生产落地的还需要花很多功夫。
作为NLP的主要方向,情感分析,文本多分类,实体识别等已经在项目中得到应用。例如
通过实体识别,抽取文本中提及到的公司、个人以及金融产品等。
通过情感分析,判别新闻资讯,对其提到的公司和个人是否利好?
通过文本多分类,判断资讯是否是高质量?判断资讯的行业和主题?
具体详情再找时间分享。而文本生成、序列到序列(Sequence to Sequence)在机器翻译、问答系统、聊天机器人中有较广的应用,在参与的项目中暂无涉及,本文主要通过tensorflow+bert+seq2seq实现一个简单的问答模型,旨在对seq2seq的了解和熟悉。

数据

关于seq2seq的demo数据有很多,例如小黄鸡聊天语料库,影视语料库,翻译语料库等等。由于最近总是做些奇怪的梦,便想着,做一个AI解梦的应用玩玩,just for fun。
通过采集从网上采集周公解梦数据,通过清洗,形成
dream:梦境;
decode:梦境解析结果。
这样的序列对,总计33000+ 条记录。数据集下载地址:后台回复“解梦”
{
"dream": "梦见商人或富翁",
"decode": "是个幸运的预兆,未来自己的事业很有机会成功,不过如果梦中的富翁是自己,则是一个凶兆。。"
}

模型准备

#下载 bert
$ git clone https://github.com/google-research/bert.git
#下载中文预训练模型
$ wget -c https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
$ unzip chinese_L-12_H-768_A-12.zip 

bert 的input:

self.input_ids = tf.placeholder(dtype=tf.int32,shape=[None, None],name="input_ids"
)
self.input_mask = tf.placeholder(dtype=tf.int32,shape=[None, None],name="input_mask"
)
self.segment_ids = tf.placeholder(dtype=tf.int32,shape=[None, None],name="segment_ids"
)
self.dropout = tf.placeholder(dtype=tf.float32,shape=None,name="dropout"
)

bert 的model :

self.bert_config = modeling.BertConfig.from_json_file(bert_config)model = modeling.BertModel(config=self.bert_config,is_training=self.is_training,input_ids=self.input_ids,input_mask=self.input_mask,token_type_ids=self.segment_ids,use_one_hot_embeddings=False)

seq2seq 的encoder_embedding 替换:

# 默认seq2seq model_inputs
# self.encoder_embedding = tf.Variable(tf.random_uniform([from_dict_size, embedded_size], -1, 1),name ="encoder_embedding")
# self.model_inputs = tf.nn.embedding_lookup(self.encoder_embedding, self.X),
#  替换成bert
self.embedded = model.get_sequence_output()
self.model_inputs = tf.nn.dropout(self.embedded, self.dropout)

seq2seq 的decoder_embedding 替换:

# 默认seq2seq decoder_embedding
# self.decoder_embedding = tf.Variable(tf.random_uniform([to_dict_size, embedded_size], -1, 1),name="decoder_embedding")
#  替换成bert
self.decoder_embedding = model.get_embedding_table()
self.decoder_input = tf.nn.embedding_lookup(self.decoder_embedding, decoder_input),

数据预处理

for i in range(len(inputs)):tokens = inputs[i]inputs_ids = model.tokenizer.convert_tokens_to_ids(inputs[i])segment_ids = [0] * len(inputs_ids)input_mask = [1] * len(inputs_ids)tag_ids = model.tokenizer.convert_tokens_to_ids(outputs[i])data.append([tokens, tag_ids, inputs_ids, segment_ids, input_mask])def pad_data(data):c_data = copy.deepcopy(data)max_x_length = max([len(i[0]) for i in c_data])max_y_length = max([len(i[1]) for i in c_data]) # 这里生成的序列的tag-id 和 input-id 长度要分开# print("max_x_length : {} ,max_y_length : {}".format( max_x_length,max_y_length))padded_data = []for i in c_data:tokens, tag_ids, inputs_ids, segment_ids, input_mask = itag_ids = tag_ids + (max_y_length - len(tag_ids)) * [0]# 注意tag-ids 的长度补充,和预测的序列长度一致。inputs_ids = inputs_ids + (max_x_length - len(inputs_ids)) * [0]segment_ids = segment_ids + (max_x_length - len(segment_ids)) * [0]input_mask = input_mask + (max_x_length - len(input_mask)) * [0]assert len(inputs_ids) == len(segment_ids) == len(input_mask)padded_data.append([tokens, tag_ids, inputs_ids, segment_ids, input_mask])return padded_data

训练

$ python3 model.py --task=train \--is_training=True \--epoch=100 \--size_layer=256 \--bert_config=chinese_L-12_H-768_A-12/bert_config.json \--vocab_file=chinese_L-12_H-768_A-12/vocab.txt \--num_layers=2 \--learning_rate=0.001 \--batch_size=16 \--checkpoint_dir=result

image

预测

$ python3 model.py --task=predict \--is_training=False \--epoch=100 \--size_layer=256 \--bert_config=chinese_L-12_H-768_A-12/bert_config.json \--vocab_file=chinese_L-12_H-768_A-12/vocab.txt \--num_layers=2 \--learning_rate=0.001 \--batch_size=16 \--checkpoint_dir=result

image

Just For Fun ^_^

本文代码: https://github.com/saiwaiyanyu/tensorflow-bert-seq2seq-dream-decoder

作者:saiwaiyanyu
链接:https://juejin.im/post/5dd9e07b51882572f00c4523
来源:掘金

8

本文由博客一文多发平台 OpenWrite 发布!

这篇关于bert+seq2seq 周公解梦,看AI如何解析你的梦境?【转】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/252320

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

全面解析HTML5中Checkbox标签

《全面解析HTML5中Checkbox标签》Checkbox是HTML5中非常重要的表单元素之一,通过合理使用其属性和样式自定义方法,可以为用户提供丰富多样的交互体验,这篇文章给大家介绍HTML5中C... 在html5中,Checkbox(复选框)是一种常用的表单元素,允许用户在一组选项中选择多个项目。本

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解