基于深度学习网络的蔬菜水果种类识别算法matlab仿真

2023-10-21 04:01

本文主要是介绍基于深度学习网络的蔬菜水果种类识别算法matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1数据集准备

4.2构建深度学习模型

4.3模型训练

4.4模型评估

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

clc;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')load gnet.mat[Predicted_Label, Probability] = classify(net, Validation_Dataset);
accuracy = mean(Predicted_Label == Validation_Dataset.Labels);index = randperm(numel(Validation_Dataset.Files), 16);
figurefor i = 1:16subplot(4,4,i)I = readimage(Validation_Dataset, index(i));imshow(I)label = Predicted_Label(index(i));title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");
end[Predicted_Label, Probability] = classify(net, Testing_Dataset);
accuracy = mean(Predicted_Label == Testing_Dataset.Labels);index = randperm(numel(Testing_Dataset.Files), 16);
figurefor i = 1:16subplot(4,4,i)I = readimage(Testing_Dataset, index(i));imshow(I)label = Predicted_Label(index(i));title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");
end
76

4.算法理论概述

         蔬菜水果种类识别算法基于深度学习网络,通过训练模型来识别图像中的蔬菜和水果种类。其原理主要利用深度卷积神经网络(Deep Convolutional Neural Network, CNN)对图像进行特征提取和分类。

4.1数据集准备

     首先,我们需要准备一个包含多种蔬菜和水果图像的数据集。这个数据集需要包含足够多的样本,以便模型能够学习到不同种类蔬菜和水果的特征。数据集需要分为训练集和测试集,训练集用于训练模型,测试集用于评估模型的性能。

       本课题我们采用的数据库如下:

4.2构建深度学习模型

      接下来,我们需要构建一个深度学习模型,用于对图像进行分类。卷积神经网络(Convolutional Neural Network, CNN)是一种常用的图像分类模型,它可以从原始图像中自动学习到有用的特征表示。一个典型的CNN模型包括多个卷积层、池化层和全连接层。通过堆叠多个卷积层和池化层,可以逐渐提取图像中的高级特征。最后,通过全连接层将提取到的特征映射到具体的类别上。

      在本课题中,我们采用的网络模型为googlenet。

4.3模型训练

     在构建好模型后,我们需要使用训练集对模型进行训练。训练过程中,我们需要定义损失函数(如交叉熵损失函数)来衡量模型的预测结果与实际标签之间的差距。同时,我们需要选择一种优化算法(如随机梯度下降算法)来不断调整模型的参数,使得损失函数的值尽可能小。

4.4模型评估

      训练完成后,我们需要使用测试集对模型的性能进行评估。评估指标可以包括准确率、召回率、F1分数等。通过评估模型的性能,我们可以了解模型在识别蔬菜和水果种类方面的表现。

以下是一个简单的卷积神经网络模型的数学公式示例:

       假设我们的模型包含两个卷积层、两个池化层和两个全连接层。对于给定的输入图像X,其输出类别Y可以通过以下公式计算:

Y=f(W2​⋅g(W1​⋅X+b1​)+b2​)

       其中,W1​和W2​分别表示第一层和第二层卷积层的权重参数,b1​和b2​分别表示第一层和第二层卷积层的偏置参数,g()表示激活函数(如ReLU函数),f()表示softmax函数,用于将模型的输出映射到具体的类别上。

       以上是一个简单的基于深度学习网络的蔬菜水果种类识别算法的原理和数学公式示例。在实际应用中,我们可以使用更加复杂的模型和训练技巧来提高模型的性能。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于深度学习网络的蔬菜水果种类识别算法matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/251784

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.