【图像压缩】基于matlab二叉树和优化截断(BTOT)遥感图像压缩【含Matlab源码 2043期】

2023-10-21 02:50

本文主要是介绍【图像压缩】基于matlab二叉树和优化截断(BTOT)遥感图像压缩【含Matlab源码 2043期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、二叉树图像压缩简介

数字图像处理和编码压缩技术经过几十年的发展 , 已逐渐成熟并应用于数字通讯和信息处理之中。 随着计算机图形学和图像处理技术广泛应用到了工业生产的各个部门,对图像压缩技术提出了更高的要求。 如何充分利用图像分析和理解方法,合理地分解图像信号、提高压缩 比、降低 主观失真度 ,是当前图像编码研究的热门之一 。 新近在数字图像处理领域提 出的根据图像 区 域灰度分布特点 , 在二叉树管理之下 , 以一定的误差限度为准则,采用 四向递归二分法,逐渐将图像表面划分为若干个凸多边形,使之逼近原始图像,可获得较好的压缩效果。当多边形数目足够多时 ,它们的周边可体现图像的边缘特点,它们的形状、位置和平均灰度可反映图像的主要特点 , 通过对多边形 的平均灰度和划分方法进行编码,可以获得较高的压缩比。 基于上述思想的编码流程如下:
在这里插入图片描述
首先将原始图像经去噪等适当的预处理后,按四向递归二分法对图像进行分割,得到许多凸多边形,然后对它们进行编码,以便最大限度地压缩数据 。 经信道传输将数据送到地面后,对数据进行解码, 由解码后的数据重建图像并进行必要的后处理。图像的分割设原图为,可通过最小平方误差准则及四向递归二分法将图像分为和两个子图,使
在这里插入图片描述
为最小,其中为区域内图像灰度的均值。 对、作同样的分割,如此下去可在满足给定误差要求的条件下将分割成个子图。 编码、解码及后处理图像分割过程的规律性和递归性不仅简化了运算,也提高了编码的效率, 对最终的叶节点采用霍夫曼编码, 对中间的内节点采用变字长编码 。 此编码方法以多边形代替原图中相关性较 强的区域 , 其基本出发点仍是信源的统计特性和冗余度 。 图像分割采用非线性方法,结合视觉特性 ,考虑人类对方向的敏感性及纹理特性,以几何失真代替量化失真 ,可获得较好的主观质量和编码效率,提高了压缩 比。 按约定解码后,当用灰度的均值填充多边形后,代替原 图灰度会产生较明显的块状效应,此时可对相邻多边形的边界进行必要的灰度平滑处理,提高信噪比和视觉效果。 区域基图像编码方法,适应处理井下图像 ,压缩比较大时仍能使图像质量较好 。 图像分解主要使用计算机图形学的多边形处理技术 , 便于硬件实现提 高速度 。 井下摄取的图像数据压缩后送回地面 , 可有效地减少传输的数据量 , 有利于实现实时处理。

⛄二、部分源代码

clc;clear;
%% ----------- Input ----------------
imname = ‘SanDiego.bmp’;
I_Orig = double(imread(imname));

[row, col] = size(I_Orig);
blksize = 64;

%% ----------- Wavelet Decomposition -------------
n_log = log2(row);
level = floor(n_log);
I_Dec = wavecdf97(I_Orig, level);

n_min = 1;
brates = [0.0625, 0.125, 0.25, 0.5, 1];

%% ----------- Coding ----------------
[out_code, blklen, n_max, n_min, out_S,out_R,out_N] = encode(I_Dec, blksize, n_min);

%% ----------- Decoding ----------------
disp([ ‘aa_BTOT_’ imname(1:end-4) ‘=[’]);
for rate=brates
I_DecR = decode(out_code, blklen, n_max, n_min, blksize, row, rate, out_S,out_R,out_N);

I_Rec = wavecdf97(I_DecR, -level);
MSE = sum(sum((I_Rec - I_Orig).^2))/(row*row);
PSNR = 10*log10(255*255/MSE);
disp([sprintf('%.4f',rate) ' ' sprintf('%.2f',PSNR)]);   

end
disp(‘];’);
figure
subplot(211)
imshow(I_Orig,[])
title(‘原图’)
subplot(212)
imshow( I_Rec,[] )
title(‘压缩图’)
function blkorder = get_blkorder(row,blksize)
%
% Morton scanning order
%

blkorder = int32([1,1]);
levsize = blksize;
while levsize < row
hor = blkorder;
vor = blkorder;
dor = blkorder;

hor(:,2) = hor(:,2) + levsize;
vor(:,1) = vor(:,1) + levsize;
dor(:,1) = dor(:,1) + levsize;
dor(:,2) = dor(:,2) + levsize;blkorder = [blkorder; hor; vor; dor];
levsize = levsize*2;

end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 冯桂,林其伟.基于区域二叉树压缩方法在井下图像数据处理中的应用[J].1997年中国地球物理学会第十三届学术年会论文集.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【图像压缩】基于matlab二叉树和优化截断(BTOT)遥感图像压缩【含Matlab源码 2043期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/251442

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、