测试造假数据的库 Faker 随机生成名字的能力如何

2023-10-21 01:10

本文主要是介绍测试造假数据的库 Faker 随机生成名字的能力如何,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看到某公众号有一篇文章:Python中神奇的第三方库:Faker
Faker 项目地址
文章大致介绍了一下 Faker 这个库的功能和用法。我对其中随机生成名字的功能比较感兴趣,想看看随着生成的数据逐渐变多,随机生成的名字会不会出现重复,以及重复的概率有多大。

测试过程如下:
  1. 每次随机生成的数目 m 的范围和步长分别是 [100, 10000]、100;
  2. 每次数据生成后求每条名字的重复的次数 n;
  3. 概率取 n/m;
  4. 重复步骤 1、2、3、4 十次;
  5. 取十次概率的均值并画出变化趋势
代码如下:
from faker import Faker
import math
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter#epoch:运行次数,int 类型
#ite:一次生成的名字数量,int 类型
#sta:是否每次显示统计信息, bool 类型,默认为 False
#函数返回 这一批名字的重复概率(所有可用名字的数量除以 ite),int 类型
def gen_names(epoch, ite, sta=False):fake = Faker(locale='zh_CN')total = 0names = {}								#存放名字及其数量的字典for r in range(epoch):for i in range(ite):if (i + r * ite + 1)%(int(epoch * ite / 10)) == 0:	#每10%输出一次进度if sta:print(str(round((i + r * ite + 1)/(epoch * ite) * 100)) + '%')name = fake.name()if name in names:names[name] = names[name] + 1 					#累加名字重复的次数else:names[name] = 0 			#如果是新名字则保存,初始数量为 0repeats = 0for key in names:repeats = repeats + names[key] 		#累加所有名字的重复次数if sta:print('{} iterations {} names each time'.format(epoch,ite))print('%d names' % len(names))print('%d repeats' % repeats)print('duplicate rate: %.5f' % (epoch * ite)))return round(repeats/(epoch * ite), 4)array = np.zeros((10,100)) 				#用来绘图的数组,10 次实验每次 100 个数据for i in range(10):print('{}/10'.format(i+1)) 			#展示进度 需要数几分钟list_ = [] 							#暂存每次统计的数据for j in range(100,10100,100):list_.append(gen_names(1, j))array[i] = list_data = np.mean(array, axis = 0)			#求十次的均值def changex(temp, position):			#x轴原来是 1-100,扩大 100 倍来符合实际意义return int(temp * 100)
plt.gca().xaxis.set_major_formatter(FuncFormatter(changex)) #扩展x轴
plt.plot(data.tolist(),color='g')							#绘制趋势,横坐标为一次生成的名字数量,纵坐标为所有名字重复的概率
plt.savefig('./test.png', format='png')						#保存图片

在这里插入图片描述

举个例子:(10000, 0.4)这个点代表的意思是,用 Faker 库一次随机生成 10000 个名字,有 40% 的名字是重复的

综上:
  • 这个库随机生成名字的数量比较大的时候,重复的概率还是很高的
  • 地址生成的真实度也比较低,但是用来测试应该够用了

这篇关于测试造假数据的库 Faker 随机生成名字的能力如何的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/250909

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr