ROS工作空间内利用rgbd_dataset_freiburg2_pioneer_360数据集配置ORB_SLAM2

本文主要是介绍ROS工作空间内利用rgbd_dataset_freiburg2_pioneer_360数据集配置ORB_SLAM2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ORB-SLAM2官方教程
一、准备工作:安装第三方依赖库
本人的依赖库均存放在文档目录里
在这里插入图片描述

1、安装Eigen

sudo apt install libeigen3-dev

在这里插入图片描述

2、安装Pangolin

git clone https://github.com/stevenlovegrove/Pangolin.git
cd Pangolin
sudo apt install libgl1-mesa-dev libglew-dev cmake
sudo apt install libpython2.7-dev python-pip
git submodule init && git submodule update
sudo python -mpip install numpy pyopengl Pillow pybind11
sudo apt install pkg-config
sudo apt install libegl1-mesa-dev libwayland-dev libxkbcommon-dev wayland-protocols
mkdir build
cd build
cmake ..
cmake --build .
sudo make install

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、安装Sophus

git clone https://github.com/strasdat/Sophus.git
cd Sophus
git checkout a621ff
mkdir build
cd build
cmake ..
make

在这里插入图片描述
在这里插入图片描述
报错问题:
在make过程中会出现如下的错误,需要修改Sophus/sophus中的so2.cpp文件,之后重新make即可
在这里插入图片描述
在这里插入图片描述

4、安装OpenCV

git clone https://github.com/opencv/opencv.git
cd opencv
git checkout 3.4.3
sudo apt install build-essential
sudo apt install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

在这里插入图片描述
在这里插入图片描述
报错问题:
在安装相关依赖时可能会出现如下错误,执行下面的命令:
在这里插入图片描述

sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt update
sudo apt install libjasper1 libjasper-dev

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
接前面的步骤→

mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
make -j8
sudo make install

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
报错问题:
在make -j8过程中会出现如下的错误,需要修改gen_java.py中的文件,之后重新make即可
在这里插入图片描述
在这里插入图片描述

修改内容:assert path[-3:]!=’.in’,path修改为assert path[-4:]!=’.in’,path
重新编译后如果还报错,将f.wrtite(buf)修改为f.write(buf.encode(‘utf-8’))

5、安装PCL

sudo apt install libpcl-dev
sudo apt install pcl-tools

在这里插入图片描述

6、安装Ceres Solver

git clone https://github.com/ceres-solver/ceres-solver.git
cd ceres-solver
sudo apt install cmake libeigen3-dev
sudo apt install libgoogle-glog-dev libatlas-base-dev libsuitesparse-dev
mkdir build
cd build
cmake ..
make -j4
sudo make install

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

7、安装g2o

git clone https://github.com/RainerKuemmerle/g2o.git
cd g2o
sudo apt install cmake libeigen3-dev
sudo apt install libsuitesparse-dev qtdeclarative5-dev qt5-qmake libqglviewer-dev

在这里插入图片描述
在这里插入图片描述

报错问题:
在安装相关依赖时可能会出现E:软件包libqglviewer-dev没有可安装候选的错误,执行下面的命令:

apt-cache search libqglviewer-dev
sudo apt-get install libqglviewer-dev-qt5

在这里插入图片描述
接前面的步骤→

mkdir build
cd build
cmake ..
make -j4
sudo make install

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、构建ORB-SLAM2库和示例
因为后期会将ORB_SLAM2和ROS关联运行,所以下述代码均存放在ros工作空间catkin_ws/src目录下进行相关测试,测试内容并没有涉及ROS相关功能,可以看成一个普通的文件夹
1、构建ORB-SLAM2库和示例

git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2
cd ORB_SLAM2 && chmod +x build.sh && ./build.sh

在这里插入图片描述

在编译过程中可能会出现的问题及解决方案:
(1)
问题:error: ‘usleep’ was not declared in this scope usleep(3000)
在这里插入图片描述
解决:在如下的文件中的头文件上分别加上#include<unistd.h>
ORB_SLAM2/src/LocalMapping.cc
ORB_SLAM2/src/LoopClosing.cc
ORB_SLAM2/src/System.cc
ORB_SLAM2/src/Tracking.cc
ORB_SLAM2/src/Viewer.cc
ORB_SLAM2/Examples/Monocular/mono_euroc.cc
ORB_SLAM2/Examples/Monocular/mono_kitti.cc
ORB_SLAM2/Examples/Monocular/mono_tum.cc
ORB_SLAM2/Examples/RGB-D/rgbd_tum.cc
ORB_SLAM2/Examples/Stereo/stereo_euroc.cc
ORB_SLAM2/Examples/Stereo/stereo_kitti.cc
在这里插入图片描述
在这里插入图片描述
(2)
问题:CMakeFiles/Stereo.dir/build.make:227:recipe for target ‘…/Stereo’ failed
CMakeFiles/RGBD.dir/build.make:197: recipe for target ‘…/RGBD’ failed
CMakeFiles/Makefile2:67: recipe for target ‘CMakeFiles/RGBD.dir/all’ failed
CMakeFiles/Makefile2:104:recipe for target ‘CMakeFiles/Stereo.dir/all’ failed
解决:把ORB_SLAM2/Examples/ROS/ORB_SLAM2/文件夹下的CMakeLists.txt文件进行修改,在set(LIBS的最后加上-lboost_system
在这里插入图片描述
(3)
问题:ORB_SLAM2/Examples/ROS/ORB_SLAM2/src/AR/ViewerAR.cc:233:9: error: ‘usleep’ was not declared in this scope usleep(mT*1000)
解决:在文件ORB_SLAM2/Examples/ROS/ORB_SLAM2/src/AR/ViewerAR.cc开始处加上#include<unistd.h>
在这里插入图片描述

2、下载公开数据集
以rgbd_dataset_freiburg2_pioneer_360为例,从TUM下载压缩包,后解压到ORB_SLAM2/data文件夹中

cd ORB_SLAM2
mkdir data
cd data
tar zxvf rgbd_dataset_freiburg2_pioneer_360.tgz

在这里插入图片描述

3、下载associate.py测试工具放在orb_slam2/Examples/RGB-D/目录下面

cd ..
cd Example/RGB-D

associate.py中的详细内容如下:

#!/usr/bin/python
# Software License Agreement (BSD License)
#
# Copyright (c) 2013, Juergen Sturm, TUM
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#  * Neither the name of TUM nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Requirements: 
# sudo apt-get install python-argparse"""
The Kinect provides the color and depth images in an un-synchronized way. This means that the set of time stamps from the color images do not intersect with those of the depth images. Therefore, we need some way of associating color images to depth images.For this purpose, you can use the ''associate.py'' script. It reads the time stamps from the rgb.txt file and the depth.txt file, and joins them by finding the best matches.
"""import argparse
import sys
import os
import numpydef read_file_list(filename):"""Reads a trajectory from a text file. File format:The file format is "stamp d1 d2 d3 ...", where stamp denotes the time stamp (to be matched)and "d1 d2 d3.." is arbitary data (e.g., a 3D position and 3D orientation) associated to this timestamp. Input:filename -- File nameOutput:dict -- dictionary of (stamp,data) tuples"""file = open(filename)data = file.read()lines = data.replace(","," ").replace("\t"," ").split("\n") list = [[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"]list = [(float(l[0]),l[1:]) for l in list if len(l)>1]return dict(list)def associate(first_list, second_list,offset,max_difference):"""Associate two dictionaries of (stamp,data). As the time stamps never match exactly, we aim to find the closest match for every input tuple.Input:first_list -- first dictionary of (stamp,data) tuplessecond_list -- second dictionary of (stamp,data) tuplesoffset -- time offset between both dictionaries (e.g., to model the delay between the sensors)max_difference -- search radius for candidate generationOutput:matches -- list of matched tuples ((stamp1,data1),(stamp2,data2))"""first_keys = first_list.keys()second_keys = second_list.keys()potential_matches = [(abs(a - (b + offset)), a, b) for a in first_keys for b in second_keys if abs(a - (b + offset)) < max_difference]potential_matches.sort()matches = []for diff, a, b in potential_matches:if a in first_keys and b in second_keys:first_keys.remove(a)second_keys.remove(b)matches.append((a, b))matches.sort()return matchesif __name__ == '__main__':# parse command lineparser = argparse.ArgumentParser(description='''This script takes two data files with timestamps and associates them   ''')parser.add_argument('first_file', help='first text file (format: timestamp data)')parser.add_argument('second_file', help='second text file (format: timestamp data)')parser.add_argument('--first_only', help='only output associated lines from first file', action='store_true')parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0)parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 0.02)',default=0.02)args = parser.parse_args()first_list = read_file_list(args.first_file)second_list = read_file_list(args.second_file)matches = associate(first_list, second_list,float(args.offset),float(args.max_difference))    if args.first_only:for a,b in matches:print("%f %s"%(a," ".join(first_list[a])))else:for a,b in matches:print("%f %s %f %s"%(a," ".join(first_list[a]),b-float(args.offset)," ".join(second_list[b])))           

4、运行时间戳关联函数associate.py
目的是将rgb 图像序列和depth深度图的序列,进行时间上的关联。运行结束后,orb_slam2/Examples/RGB-D/目录下面会生成associations.txt文件。

python associate.py ../../data/rgbd_dataset_freiburg2_pioneer_360/rgb.txt ../../data/rgbd_dataset_freiburg2_pioneer_360/depth.txt > associations.txt

5、运行ORB_SLAM2
在ORB_SLAM2主目录上运行执行指令

cd ..
cd ..
./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUM2.yaml data/rgbd_dataset_freiburg2_pioneer_360 Examples/RGB-D/associations.txt

在这里插入图片描述
在这里插入图片描述

这篇关于ROS工作空间内利用rgbd_dataset_freiburg2_pioneer_360数据集配置ORB_SLAM2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249644

相关文章

mybatis映射器配置小结

《mybatis映射器配置小结》本文详解MyBatis映射器配置,重点讲解字段映射的三种解决方案(别名、自动驼峰映射、resultMap),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录select中字段的映射问题使用SQL语句中的别名功能使用mapUnderscoreToCame

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方