随机森林应用案例 —— otto产品分类

2023-10-20 17:50

本文主要是介绍随机森林应用案例 —— otto产品分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

otto产品分类

  • 1 案例背景
  • 2 数据集介绍
  • 3 评分标准
  • 4 流程实现
    • 4.1 获取数据集
    • 4.2 数据基本处理
    • 4.3 模型训练
    • 4.4 模型评估
    • 4.5 模型调优
    • 4.6 生成提交数据

1 案例背景

奥托集团是世界上最大的电子商务公司之一,在20多个国家设有子公司。该公司每天都在世界各地销售数百万种产品,所以对其产品根据性能合理的分类非常重要。

不过,在实际工作中,工作人员发现,许多相同的产品得到了不同的分类。本案例要求,你对奥拓集团的产品进行正确的分类。尽可能的提供分类的准确性。

2 数据集介绍

本案例中,数据集包含大约200,000种产品的93个特征。其目的是建立一个能够区分otto公司主要产品类别的预测模型。所有产品共被分成九个类别(例如时装,电子产品等)
在这里插入图片描述

  • id - 产品id
  • feat_1, feat_2, …, feat_93 - 产品的各个特征
  • target - 产品被划分的类别

数据集:https://www.kaggle.com/c/otto-group-product-classification-challenge/overview

3 评分标准

在这里插入图片描述

4 流程实现

4.1 获取数据集

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltdata = pd.read_csv("./Data/otto/train.csv")
data.head()

在这里插入图片描述
查看数据分布

import seaborn as snssns.countplot(data.target)
plt.show()

在这里插入图片描述
由上图可以看出,该数据类别不均衡,因数据量庞大,采用随机欠采样进行处理

4.2 数据基本处理

(1)确定特征值和标签值

# 采用随机欠采样之前需要确定数据的特征值和标签值
y=data["target"]
x=data.drop(["id","target"],axis=1)

(2)随机欠采样处理

from imblearn.under_sampling import RandomUnderSamplerrus = RandomUnderSampler()
x_resampled,y_resampled = rus.fit_resample(x,y)

查看欠采样后的数据形状

x.shape,y.shape
# ((61878, 93), (61878,))
x_resampled.shape,y_resampled.shape
# ((17361, 93), (17361,))

查看数据经过欠采样之后类别是否平衡

sns.countplot(y_resampled)
plt.show()

在这里插入图片描述

(3)把标签值转换为数字

y_resampled

在这里插入图片描述

from sklearn.preprocessing import LabelEncoderle = LabelEncoder()
y_resampled = le.fit_transform(y_resampled)
y_resampled

在这里插入图片描述
(4)分割数据

from sklearn.model_selection import train_test_splitx_train,x_test,y_train,y_test = train_test_split(x_resampled,y_resampled,test_size=0.2)

4.3 模型训练

from sklearn.ensemble import RandomForestClassifierestimator = RandomForestClassifier(oob_score=True)
estimator.fit(x_train,y_train)

4.4 模型评估

本题要求使用logloss进行模型评估

y_pre = estimator.predict(x_test)
y_test,y_pre

在这里插入图片描述

需要注意的是:logloss在使用过程中,必须要求将输出用one-hot表示

from sklearn.preprocessing import OneHotEncoderone_hot = OneHotEncoder(sparse=False)
y_pre = one_hot.fit_transform(y_pre.reshape(-1,1))
y_test = one_hot.fit_transform(y_test.reshape(-1,1))
y_test,y_pre

在这里插入图片描述

from sklearn.metrics import log_losslog_loss(y_test,y_pre,eps=1e-15,normalize=True)
# 7.637713870225003

改变预测值的输出模式,让输出结果为可能性的百分占比,降低logloss值

y_pre_proba = estimator.predict_proba(x_test)
y_pre_proba

在这里插入图片描述

log_loss(y_test,y_pre_proba,eps=1e-15,normalize=True)
# 0.7611795612521034

由此可见,log_loss值下降了许多

4.5 模型调优

(1)确定最优的n_estimators

# 确定n_estimators的取值范围
tuned_parameters = range(10,200,10)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=one_parameter,max_depth=10,max_features=10,min_samples_leaf=10,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化 
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("n_estimators")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("n_estimators")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定n_estimators=175时,效果不错

(2)确定最优的max_depth

# 确定max_depth的取值范围
tuned_parameters = range(10,100,10)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=175,max_depth=one_parameter,max_features=10,min_samples_leaf=10,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化 
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("max_depth")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("max_depth")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定max_depth=30时,效果不错

(3)确定最优的max_features

# 确定max_features取值范围
tuned_parameters = range(5,40,5)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=175,max_depth=30,max_features=one_parameter,min_samples_leaf=10,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("max_features")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("max_features")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定max_features=15时,效果不错

(4)确定最优的min_samples_leaf

# 确定n_estimators的取值范围
tuned_parameters = range(1,10,2)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=175,max_depth=30,max_features=15,min_samples_leaf=one_parameter,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("min_samples_leaf")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("min_samples_leaf")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定min_samples_leaf=1时,效果不错

(5)确定最优模型

estimator = RandomForestClassifier(n_estimators=175,max_depth=30,max_features=15,min_samples_leaf=1,oob_score=True,random_state=0,n_jobs=-1)
estimator.fit(x_train,y_train)
y_pre_proba = estimator.predict_proba(x_test)
log_loss(y_test,y_pre_proba)
# 0.7413651159154644

4.6 生成提交数据

test_data = pd.read_csv("./Data/otto/test.csv")
test_data.head()

在这里插入图片描述

注意:测试集是没有目标值的

为了便于模型预测,删去 id 列,仅保留特征列

test_data_drop_id = test_data.drop("id",axis=1)
test_data_drop_id.head()

在这里插入图片描述

y_pre_test = estimator.predict_proba(test_data_drop_id)
y_pre_test

在这里插入图片描述
按要求生成列名

result_data = pd.DataFrame(y_pre_test,columns=["Class_"+str(i) for i in range(1,10)])
result_data.head()

在这里插入图片描述
在第一列添加 id 列

result_data.insert(loc=0,column="id",value=test_data.id)
result_data.head()

在这里插入图片描述
生成提交数据的csv文件

result_data.to_csv("./Data/otto/Submission.csv",index=False)

这篇关于随机森林应用案例 —— otto产品分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248701

相关文章

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

Java中实现对象的拷贝案例讲解

《Java中实现对象的拷贝案例讲解》Java对象拷贝分为浅拷贝(复制值及引用地址)和深拷贝(递归复制所有引用对象),常用方法包括Object.clone()、序列化及JSON转换,需处理循环引用问题,... 目录对象的拷贝简介浅拷贝和深拷贝浅拷贝深拷贝深拷贝和循环引用总结对象的拷贝简介对象的拷贝,把一个

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3