如何写代码实现VRP问题中车辆容量限制及时间窗要求(python)

2023-10-20 17:44

本文主要是介绍如何写代码实现VRP问题中车辆容量限制及时间窗要求(python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题研究背景

使用遗传模拟退火算法求解如下10个卸货点的VRPTW问题。为了使研究的问题更加有意义,本人将时间限理解为服务点一天的具体可以允许配送的时间。 如果不要求车辆从配送中心出发的时间是统一的并且为0时刻,那么就默认第一个配送节点是一定能赶到的。采取从配送中心出发的时间不为0时刻的策略,默认一定能达到第一个配送点,所以采用最早到达时间推算车辆出发的时间。
假设配送中心营业时间是早上七点至晚上七点,即配送中心也有最早和最晚时间窗要求,车辆配送货物应该满足这个发车即回到配送中心的最晚时间限制。卸货点1-10的时间限制理解如下:卸货点1要求在下午1点至下午4点配送,卸货点1要求的服务时间是半个小时;卸货点2要求在下午4点至下午6点配送,卸货点2要求的服务时间是1个小时,以此类推其他的卸货点的配送及服务时间限制。算法中用到配送及服务时间是下午的情况,例如卸货点1可转成数字表示是[13,16]。

在这里插入图片描述

配送点的需求货物量如下:

在这里插入图片描述

配送点的达到时间窗及服务时间如下:

在这里插入图片描述

代码编码思路

取染色体,依次判断染色体的基因是否满足车辆载重量及时间窗限制条件,染色体基因片段如果不满足两者,则默认为一条路线,在中间插入配送中心节点0.

考虑是否可以写两个独立的函数,先判断车辆的载重量限制,再前面生成的解再次寻优判断是否满足时间窗限制。

编写代码过程中遇到的错误

从配送中心出发立即回到配送中心

chrom [10  1  5  2  3  6  4  9  7  8]
*******000******
*******000******
routes [[0, 0, 0]]

当首次配送的需求点为卸货点10时,最早到达时间要求是下午5点,配送中心开门是上午七点,关门是下午七点,两点之间的路径长度是160公里,车辆每小时的车速是40公里/小时,所以最佳的方案是不考虑先去卸货点10完成配送任务,因为车辆返回时赶不上配送中心的关门时间。

在这里插入图片描述

一些其他的错误

opulation [[ 7  6  1  2  9  3  4  5  8 10][ 3  2  5 10  7  4  6  8  1  9][ 4  6  8  7  1  9  5  3  2 10][10  5  7  2  6  4  3  9  8  1][ 9  7 10  8  2  1  4  5  3  6][ 5 10  9  3  6  1  2  4  8  7][ 5  6  2  7  3 10  9  4  8  1][ 2  9  1  3 10  8  6  4  5  7][ 7  3  1  6  2 10  9  8  4  5][10  4  5  9  6  7  3  2  1  8][ 2  4  3  5  8  6  7  1 10  9][ 9  2  6  8  3  1  5  4 10  7][10  2  9  5  1  4  6  3  8  7][ 4  9  5  2  6  1 10  3  8  7][ 7  4  6  8  9 10  3  2  1  5][10  1  4  9  6  2  3  5  7  8][10  9  5  4  3  2  8  1  7  6][ 7  3  8  1 10  5  4  2  9  6][ 3  9 10  4  6  7  5  2  1  8][ 5 10  3  6  4  7  9  1  2  8][ 5  7  3  6  1  2  4  9 10  8][ 3  9  1 10  5  4  2  7  6  8][10  7  1  2  5  8  6  9  4  3][10  6  8  2  9  7  4  5  1  3][ 4  2  7  1  9  3 10  5  8  6][ 7  4  5  8  1  3  9  6 10  2][ 4  1  7  5  9  2  3 10  8  6][ 5  3  1 10  8  9  7  6  4  2][ 7  3  4  5  9  6  8  1 10  2][ 4  2  5 10  1  9  6  7  8  3][ 1  6  4  2 10  7  3  8  9  5][ 9  4  3  6  8 10  2  1  7  5][ 4  7  2  3  9 10  1  5  6  8][ 5  6 10  8  9  7  2  1  3  4][ 8  3  9  1  6  5  4 10  7  2][ 5  7  4  9  3  8 10  1  2  6][ 7  2  9  1  6  5  4 10  3  8][ 6 10  4  5  8  7  1  3  9  2][ 9  5 10  8  3  6  7  2  1  4][ 5  6  3 10  4  9  8  7  1  2][ 7  1  8  6  2  3  9  5 10  4][ 9  1  8  7  4  3  2  6 10  5][ 7  3  2 10  1  6  4  9  8  5][ 5  9  6  3  7  2  8  4  1 10][ 1  2  4  7  8  5  3  6  9 10][ 3  7  2  1  6 10  5  9  4  8][ 7  5  9  3  8  4 10  2  1  6][ 5  6  8 10  9  3  7  4  1  2][ 3  9  7  6  5  2 10  1  4  8][ 3  4  2  7  1  9  8  5 10  6]]
chrom [ 7  6  1  2  9  3  4  5  8 10]
*******000******
total_path_list [[0, 7, 6, 0], [0, 1, 2, 9, 0], [0, 3, 0], [0, 4, 5, 8, 0], [0, 10, 0]]
node 2
node 3
new_chrom [2, 3, 0, 9, 0, 0]
*******000******
total_path_list [[0, 0, 9, 0]]
new_chrom [9]
*******000******
total_path_list [[0, 9, 0]]
node 9
new_chrom [9]
routes [9]
cannotbe_firstnode_served [4, 5, 7, 10]
*******000******
total_path_list [[0, 5, 1, 2, 0], [0, 10, 0], [0, 4, 6, 0], [0, 3, 0], [0, 7, 8, 0], [0, 9, 0]]
path_list [0, 5, 1, 2, 0]
path_list [0, 10, 0]
path_list [0, 4, 6, 0]
path_list [0, 3, 0]
path_list [0, 7, 8, 0]
path_list [0, 9, 0]
new_chrom [3, 9, 5, 10, 4, 7]
*******000******
total_path_list [[0, 10, 0], [0, 4, 0], [0, 5, 0], [0, 7, 0]]
total_path_list [[0, 2, 3, 0], [0, 4, 5, 0], [0, 6, 7, 0], [0, 8, 9, 0], [0, 10, 0], [0, 1, 0]]
path_list [0, 2, 3, 0]
path_list [0, 4, 5, 0]
path_list [0, 6, 7, 0]
path_list [0, 8, 9, 0]
path_list [0, 10, 0]
path_list [0, 1, 0]
feasible_node_list [2, 3, 6, 8, 9, 1]
not_feasible_node_list [4, 5, 7, 10]
new_chrom [2, 3, 6, 8, 9, 1, 4, 5, 7, 10]Process finished with exit code 0

函数代码

修改卸货点的时间窗,增加求得时间窗+车辆载重量约束限制的可行解概率。
在这里插入图片描述

车辆容量限制的代码见本博主的博文《【纠错】遗传算法求解VRP计算车辆容量限制的代码有bug》,时间窗要求的函数如下:

def time_window_restraint(total_path_list):# 先求解车辆容量限制,再计算时间窗限制,硬时间窗限制# 如果不要求车辆从配送中心出发的时间是统一的并且为0时刻,那么就默认第一个配送节点是一定能赶到的# 采取从配送中心出发的时间不为0时刻的策略,默认一定能达到第一个配送点,所以采用最早到达时间推算车辆出发的时间# 假设配送中心营业时间是早上七点至晚上七点# 先排除算例无解的场景,即配送中心开门时间都不能实现派车辆运输的场景print("total_path_list", total_path_list)not_feasible_node_list = []feasible_node_list = []feasible_path_list = []for i in range(len(total_path_list)):path_list = total_path_list[i]arrive_time = demand_time_window[0, path_list[1]]leave_time = arrive_time + demand_service_time[path_list[1]]if path_list[1] in cannotbe_firstnode_served:not_feasible_node_list.extend(path_list[1:-1])else:# 默认第一个服务点的时间窗一定是满足要求的if len(path_list) == 3:# 返回配送中心的时间back_center_time = leave_time + travel_time_graph[path_list[-2]][0]if back_center_time > dis_center_open_time[1]:not_feasible_node_list.append(path_list[-2])else:# 只有一个配送节点的场景feasible_node_list.append(path_list[-2])else:feasible_node_list.append(path_list[1])if len(path_list) == 4:before_node = path_list[1]cur_node = path_list[2]arrive_time = leave_time + travel_time_graph[before_node][cur_node]if (arrive_time < demand_time_window[0, cur_node]) or (arrive_time > demand_time_window[1, cur_node]):# 不可行解# 判断是否加入不可行解集合if before_node in feasible_node_list:feasible_node_list.remove(before_node)not_feasible_node_list.append(before_node)not_feasible_node_list.append(cur_node)else:not_feasible_node_list.append(cur_node)else:leave_time = arrive_time + demand_service_time[cur_node]# 返回配送中心的时间back_center_time = leave_time + travel_time_graph[cur_node][0]if back_center_time > dis_center_open_time[1]:# 判断是否加入不可行解集合if before_node in feasible_node_list:feasible_node_list.remove(before_node)not_feasible_node_list.append(before_node)not_feasible_node_list.append(cur_node)else:not_feasible_node_list.append(cur_node)else:# 判断是否加入可行解集合if before_node in not_feasible_node_list:not_feasible_node_list.append(cur_node)else:feasible_node_list.append(cur_node)else:remain_node_list = path_list[2:-1]for index in range(len(remain_node_list)):cur_node = remain_node_list[index]if len(remain_node_list) == 1:before_node = remain_node_list[0]else:before_node = remain_node_list[index-1]arrive_time = leave_time + travel_time_graph[before_node][cur_node]if (arrive_time < demand_time_window[0, cur_node]) or (arrive_time > demand_time_window[1, cur_node]):# 不可行解# 判断是否加入不可行解集合if before_node in feasible_node_list:feasible_node_list.remove(before_node)not_feasible_node_list.append(before_node)not_feasible_node_list.append(cur_node)else:not_feasible_node_list.append(cur_node)else:leave_time = arrive_time + demand_service_time[cur_node]if cur_node == path_list[-2]:# 返回配送中心的时间back_center_time = leave_time + travel_time_graph[path_list[-2]][0]if back_center_time > dis_center_open_time[1]:# 判断是否加入不可行解集合if before_node in feasible_node_list:feasible_node_list.remove(before_node)not_feasible_node_list.append(before_node)not_feasible_node_list.append(cur_node)else:# 判断是否加入可行解集合not_feasible_node_list.append(cur_node)else:# 判断是否加入可行解集合if before_node in not_feasible_node_list:not_feasible_node_list.append(cur_node)else:feasible_node_list.append(cur_node)else:# 判断是否加入可行解集合if before_node in not_feasible_node_list:not_feasible_node_list.append(cur_node)else:feasible_node_list.append(cur_node)new_chrom = []if len(feasible_node_list) > 0:for node in feasible_node_list:new_chrom.append(node)if len(not_feasible_node_list) > 0:for node in not_feasible_node_list:new_chrom.append(node)not_feasible_node_flag = Trueelse:not_feasible_node_flag = Falseprint("new_chrom", new_chrom)return not_feasible_node_flag, feasible_node_list, new_chrom
def get_feasible_route(chrom):# 先判断是否满足车辆最大载重量限制cur_chrom = copy.deepcopy(chrom)not_feasible_node_flag = Truecount = 0while not_feasible_node_flag:# 先用得到满足车辆载重量的函数切出可行解路径print("*******000******")total_path_list = vehicle_capacity_restraint(cur_chrom)# 再使用时间窗判断是否路径也是满足时间窗要求的not_feasible_node_flag, feasible_node_list, new_chrom = time_window_restraint(total_path_list)print("not_feasible_node_flag", not_feasible_node_flag)if not_feasible_node_flag:print("*******001******")cur_chrom = new_chromcount += 1else:print("*******003******")return vehicle_capacity_restraint(new_chrom)if (count > 1) and (cur_chrom == new_chrom):return vehicle_capacity_restraint(new_chrom)  # 使用函数切出路线

算法迭代示意图

遗传算法迭代图如下:

在这里插入图片描述

连续两次运行程序,得到的目标值相同,下面图2比上图1在100代左右就寻找到了结果:

在这里插入图片描述

事不过三,连续三次,目标值开出来的都是478

在这里插入图片描述

这篇关于如何写代码实现VRP问题中车辆容量限制及时间窗要求(python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248669

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三