代码随想录算法训练营第二十八天丨 回溯算法part04

2023-10-20 16:28

本文主要是介绍代码随想录算法训练营第二十八天丨 回溯算法part04,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

491.递增子序列

思路

这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。

在90.子集II (opens new window)中是通过排序,再加一个标记数组来达到去重的目的。

而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。

所以不能使用之前的去重逻辑!

本题给出的示例,还是一个有序数组 [4, 6, 7, 7],这更容易误导大家按照排序的思路去做了。

为了有鲜明的对比,我用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:

491. 递增子序列1

回溯三部曲

  • 递归函数参数

本题求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。

代码如下:

List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
void backTracking(int[] nums,int startIndex)
  • 终止条件

本题其实类似求子集问题,也是要遍历树形结构找每一个节点,所以和可以不加终止条件,startIndex每次都会加1,并不会无限递归。

但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:

if (path.size() >= 2){ // 注意这里不要加return,因为要取树上的所有节点res.add(new ArrayList<>(path));
}
  • 单层搜索逻辑

491. 递增子序列1

 在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了

那么单层搜索代码如下:

HashSet<Integer> hs = new HashSet<>();// 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.length; i++) {if ((!path.isEmpty() && path.getLast() > nums[i])||hs.contains(nums[i])){continue;}hs.add(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.add(nums[i]);backTracking(nums,i+1);path.removeLast();
}

这也是需要注意的点,HashSet<Integer> hs = new HashSet<>(); 是记录本层元素是否重复使用,新的一层 hs 都会重新定义(清空),所以要知道uset只负责本层!

整体代码如下:

class Solution {List<List<Integer>> res = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums,0);return res;}void backTracking(int[] nums,int startIndex){if (path.size() >= 2){ // 注意这里不要加return,因为要取树上的所有节点res.add(new ArrayList<>(path));}HashSet<Integer> hs = new HashSet<>();// 使用set来对本层元素进行去重for (int i = startIndex; i < nums.length; i++) {if ((!path.isEmpty() && path.getLast() > nums[i])||hs.contains(nums[i])){continue;}hs.add(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.add(nums[i]);backTracking(nums,i+1);path.removeLast();}}
}

46.全排列

思路

我以[1,2,3]为例,抽象成树形结构如下:

46.全排列

回溯三部曲

  • 递归函数参数

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:

46.全排列

代码如下:

List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
boolean[] used;
void backtracking(int[] nums)
  • 递归终止条件

46.全排列

可以看出叶子节点,就是收割结果的地方。

那么什么时候,算是到达叶子节点呢?

当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

代码如下:

// 此时说明找到了一组
if (path.size() == nums.length){res.add(new ArrayList<>(path));return;
}
  • 单层搜索的逻辑

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次

代码如下:

for (int i = 0; i < nums.length; i++) {if (used[i]){// path里已经收录的元素,直接跳过continue;}path.add(nums[i]);used[i] = true;backtracking(nums);used[i] = false;path.removeLast();
}

整体代码如下:

class Solution {List<List<Integer>> res = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();boolean[] used;public List<List<Integer>> permute(int[] nums) {used = new boolean[nums.length];Arrays.fill(used,false);backtracking(nums);return res;}void backtracking(int[] nums){if (path.size() == nums.length){res.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {if (used[i]){continue;}path.add(nums[i]);used[i] = true;backtracking(nums);used[i] = false;path.removeLast();}}
}

47.全排列 II

思路

这道题目和上一题 全排列 的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列

这里又涉及到去重了。

在40.组合总和II (opens new window)、90.子集II (opens new window)分别详细讲解了组合问题和子集问题如何去重。

那么排列问题其实也是一样的套路。

还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

47.全排列II1

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

整体代码如下:

class Solution {List<List<Integer>> res = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();boolean[] used;public List<List<Integer>> permuteUnique(int[] nums) {used = new boolean[nums.length];Arrays.fill(used,false);Arrays.sort(nums);backTracking(nums);return res;}void backTracking(int[] nums){if (path.size() == nums.length){res.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {// used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过// used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过// 如果同⼀树层nums[i - 1]使⽤过则直接跳过if ((i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false)|| used[i]) {continue;}//如果同⼀树⽀nums[i]没使⽤过开始处理path.add(nums[i]);used[i] = true;//标记同⼀树⽀nums[i]使⽤过,防止同一树枝重复使用backTracking(nums);//回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复used[i] = false;path.removeLast();//回溯}}
}

以上为我做题时候的相关思路,自己的语言组织能力较弱,很多都是直接抄卡哥的,有错误望指正。

这篇关于代码随想录算法训练营第二十八天丨 回溯算法part04的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248267

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.