Python特征分析重要性的常用方法

2023-10-20 05:12

本文主要是介绍Python特征分析重要性的常用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。

图片

为什么特征重要性分析很重要?

如果有一个包含数十个甚至数百个特征的数据集,每个特征都可能对你的机器学习模型的性能有所贡献。但是并不是所有的特征都是一样的。有些可能是冗余的或不相关的,这会增加建模的复杂性并可能导致过拟合。

特征重要性分析可以识别并关注最具信息量的特征,从而带来以下几个优势:

  • 改进的模型性能

  • 减少过度拟合

  • 更快的训练和推理

  • 增强的可解释性

下面我们深入了解在Python中的一些特性重要性分析的方法。

特征重要性分析方法

1、排列重要性 PermutationImportance

该方法会随机排列每个特征的值,然后监控模型性能下降的程度。如果获得了更大的下降意味着特征更重要

 from sklearn.datasets import load_breast_cancerfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.inspection import permutation_importancefrom sklearn.model_selection import train_test_splitimport matplotlib.pyplot as pltcancer = load_breast_cancer()X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=1)rf = RandomForestClassifier(n_estimators=100, random_state=1)rf.fit(X_train, y_train)baseline = rf.score(X_test, y_test)result = permutation_importance(rf, X_test, y_test, n_repeats=10, random_state=1, scoring='accuracy')importances = result.importances_mean# Visualize permutation importancesplt.bar(range(len(importances)), importances)plt.xlabel('Feature Index')plt.ylabel('Permutation Importance')plt.show()

图片

2、内置特征重要性(coef_或feature_importances_)

一些模型,如线性回归和随机森林,可以直接输出特征重要性分数。这些显示了每个特征对最终预测的贡献。

 from sklearn.datasets import load_breast_cancerfrom sklearn.ensemble import RandomForestClassifierX, y = load_breast_cancer(return_X_y=True)rf = RandomForestClassifier(n_estimators=100, random_state=1)rf.fit(X, y)importances = rf.feature_importances_# Plot importancesplt.bar(range(X.shape[1]), importances)plt.xlabel('Feature Index')plt.ylabel('Feature Importance')plt.show()

图片

3、Leave-one-out

迭代地每次删除一个特征并评估准确性。

 from sklearn.datasets import load_breast_cancerfrom sklearn.model_selection import train_test_splitfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.metrics import accuracy_scoreimport matplotlib.pyplot as pltimport numpy as np# Load sample dataX, y = load_breast_cancer(return_X_y=True)# Split data into train and test setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)# Train a random forest modelrf = RandomForestClassifier(n_estimators=100, random_state=1)rf.fit(X_train, y_train)# Get baseline accuracy on test database_acc = accuracy_score(y_test, rf.predict(X_test))# Initialize empty list to store importancesimportances = []# Iterate over all columns and remove one at a timefor i in range(X_train.shape[1]):X_temp = np.delete(X_train, i, axis=1)rf.fit(X_temp, y_train)acc = accuracy_score(y_test, rf.predict(np.delete(X_test, i, axis=1)))importances.append(base_acc - acc)# Plot importance scores    plt.bar(range(len(importances)), importances)plt.show()

图片

4、相关性分析

计算各特征与目标变量之间的相关性。相关性越高的特征越重要。

 import pandas as pdfrom sklearn.datasets import load_breast_cancerX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = ycorrelations = df.corrwith(df.y).abs()correlations.sort_values(ascending=False, inplace=True)correlations.plot.bar()

图片

5、递归特征消除 Recursive Feature Elimination

递归地删除特征并查看它如何影响模型性能。删除时会导致更大下降的特征更重要。

from sklearn.ensemble import RandomForestClassifierfrom sklearn.feature_selection import RFEimport pandas as pdfrom sklearn.datasets import load_breast_cancerimport matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = yrf = RandomForestClassifier()rfe = RFE(rf, n_features_to_select=10)rfe.fit(X, y)print(rfe.ranking_)
输出为[6 4 11 12 7 11 18 21 8 16 10 3 15 14 19 17 20 13 11 11 12 9 11 5 11]

6、XGBoost特性重要性

计算一个特性用于跨所有树拆分数据的次数。更多的分裂意味着更重要。

 import xgboost as xgbimport pandas as pdfrom sklearn.datasets import load_breast_cancerimport matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = ymodel = xgb.XGBClassifier()model.fit(X, y)importances = model.feature_importances_importances = pd.Series(importances, index=range(X.shape[1]))importances.plot.bar()

图片

7、主成分分析 PCA

对特征进行主成分分析,并查看每个主成分的解释方差比。在前几个组件上具有较高负载的特性更为重要。

 from sklearn.decomposition import PCAimport pandas as pdfrom sklearn.datasets import load_breast_cancerimport matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = ypca = PCA()pca.fit(X)plt.bar(range(pca.n_components_), pca.explained_variance_ratio_)plt.xlabel('PCA components')plt.ylabel('Explained Variance')

图片

8、方差分析 ANOVA

使用f_classif()获得每个特征的方差分析f值。f值越高,表明特征与目标的相关性越强。

 from sklearn.feature_selection import f_classifimport pandas as pdfrom sklearn.datasets import load_breast_cancerimport matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = yfval = f_classif(X, y)fval = pd.Series(fval[0], index=range(X.shape[1]))fval.plot.bar()

图片

9、卡方检验

使用chi2()获得每个特征的卡方统计信息。得分越高的特征越有可能独立于目标。

from sklearn.feature_selection import chi2import pandas as pdfrom sklearn.datasets import load_breast_cancerimport matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = ychi_scores = chi2(X, y)chi_scores = pd.Series(chi_scores[0], index=range(X.shape[1]))chi_scores.plot.bar()

图片

为什么不同的方法会检测到不同的特征?

不同的特征重要性方法有时可以识别出不同的特征是最重要的,这是因为:

1、他们用不同的方式衡量重要性:

有的使用不同特特征进行预测,监控精度下降

像XGBOOST或者回归模型使用内置重要性来进行特征的重要性排列

而PCA着眼于方差解释

2、不同模型有不同模型的方法:

线性模型倾向于线性关系,树模型倾向于非线性有增益的特征

3、交互作用:

有的方法可以获取特征之间的相互左右,而有一些则不行,这就会导致结果的差异

4、不稳定:

使用不同的数据子集,重要性值可能在同一方法的不同运行中有所不同,这是因为数据差异决定的

5、Hyperparameters:

通过调整超参数,如PCA组件或树深度,也会影响结果

所以不同的假设、偏差、数据处理和方法的可变性意味着它们并不总是在最重要的特征上保持一致。

选择特征重要性分析方法的一些最佳实践

  • 尝试多种方法以获得更健壮的视图

  • 聚合结果的集成方法

  • 更多地关注相对顺序,而不是绝对值

  • 差异并不一定意味着有问题,检查差异的原因会对数据和模型有更深入的了解

这篇关于Python特征分析重要性的常用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/244905

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: