简图记录-算法复杂度分析

2023-10-19 19:08

本文主要是介绍简图记录-算法复杂度分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概念

1、算法执行效率

主要从 执行需要的时间(时间复杂度) 和 占用的存储空间(空间复杂度)分析 。
方式主要有:事后统计法 和 事前分析法。

2、事后统计法缺点

需要执行程序进行统计,由于其影响因素过多,比如 机器的运行速度、编译的语言、编译产生的机器语言质量等,掩盖了 算法分析的本质。

3、事前分析法概念

撇开 硬软件因素,仅讨论算法本身的执行效率。算法本身 由 控制结构(顺序、分支、循环)和 原操作(指对固有数据类型操作)构成,两者综合影响了算法的执行效率。
为了简化计算,算法的执行时间大致由一次基本运算的时间和运算次数的乘积得到。
事前分析法主要通过 大O表示法 来体现 随着问题规模的变化,算法执行效率的变化趋势,而非具体的实际执行效率

4、大O表示法

例如时间复杂度的计算公式(算法的渐进时间复杂度):T(n) = O(f(n))。
n为问题的规模大小。f(n)表示执行次数。
O()为大O表示法,表示随着问题规模n增大,算法的执行时间增长率与f(n)增长率相同。
大O表示法定义:如f(n)是正整数n的函数,T(n) = O(f(n))表示存在一个正常数C和n0,当n>=n0时,都满足T(n) <= f(n),也就是T(n)只求最高阶项,其余低阶和常数忽略。

二、时间复杂度

算法的渐进时间复杂度:T(n) = O(f(n))
常见的时间复杂度举例(从小到大):
常数阶 O(1) 没有循环等复杂结构,运行次数和规模n无关。
对数阶 O(logn) 执行与logn正相关,如:

i = 1
while (i < n) { i *=2; }

线性阶 O(n)

for (int i = 0; i < n; i++) {j++;
}

线性对数阶 O(nlogn)

for (int i = 0; i < n; i++) {int j = 1while (j < n) { j *=2; }
}

平法阶 O(n^2)
立方阶 O(n^3)
指数阶 O(2^n)

三、空间复杂度

算法的渐进空间复杂度:S(n) = O(g(n))
影响因素:1、算法本身要占用的空间 输入/输出,指令,常数,变量等。2、算法执行过程临时空间。
常见的空间复杂度举例,例如 将一个 数组a中n个数 逆序 存储:
常数阶 O(1)

for (i = 0; i < n/2; i++) {tmp = a[i]; //只使用了一个临时变量 用来变换a[i] = a[n - 1 - i];a[n - 1 - i] = tmp;
}

线性阶 O(n)

for (i = 0; i < n; i++) { b[i] = a[n - 1 - i]; } // 使用了一个b[n]数组来反转
for (i = 0; i < n; i++) { a[i] = b[i]; } 

四、最坏/平均/最好 情况

根据输入数据初始状态不同,算法的执行次数和空间也会不同。例如 排序算法,输入数据规律不同,决定了选择算法类型执行的次数不同。 算法分析主要由以下三种情况(以时间复杂度举例)。

1、最坏 时间 复杂度

最坏的情况下,时间复杂度,也就是最高阶执行操作的最大执行次数。通常情况大家讨论时间复杂度 都是 讨论这个问题,最关注这个。

2、平均 时间 复杂度

在所有输入可能概念相同的情况,算法执行时间的数学期望(最具实际意义)。

3、最好 时间 复杂度

在这里插入图片描述

这篇关于简图记录-算法复杂度分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/241775

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle