简图记录-算法复杂度分析

2023-10-19 19:08

本文主要是介绍简图记录-算法复杂度分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概念

1、算法执行效率

主要从 执行需要的时间(时间复杂度) 和 占用的存储空间(空间复杂度)分析 。
方式主要有:事后统计法 和 事前分析法。

2、事后统计法缺点

需要执行程序进行统计,由于其影响因素过多,比如 机器的运行速度、编译的语言、编译产生的机器语言质量等,掩盖了 算法分析的本质。

3、事前分析法概念

撇开 硬软件因素,仅讨论算法本身的执行效率。算法本身 由 控制结构(顺序、分支、循环)和 原操作(指对固有数据类型操作)构成,两者综合影响了算法的执行效率。
为了简化计算,算法的执行时间大致由一次基本运算的时间和运算次数的乘积得到。
事前分析法主要通过 大O表示法 来体现 随着问题规模的变化,算法执行效率的变化趋势,而非具体的实际执行效率

4、大O表示法

例如时间复杂度的计算公式(算法的渐进时间复杂度):T(n) = O(f(n))。
n为问题的规模大小。f(n)表示执行次数。
O()为大O表示法,表示随着问题规模n增大,算法的执行时间增长率与f(n)增长率相同。
大O表示法定义:如f(n)是正整数n的函数,T(n) = O(f(n))表示存在一个正常数C和n0,当n>=n0时,都满足T(n) <= f(n),也就是T(n)只求最高阶项,其余低阶和常数忽略。

二、时间复杂度

算法的渐进时间复杂度:T(n) = O(f(n))
常见的时间复杂度举例(从小到大):
常数阶 O(1) 没有循环等复杂结构,运行次数和规模n无关。
对数阶 O(logn) 执行与logn正相关,如:

i = 1
while (i < n) { i *=2; }

线性阶 O(n)

for (int i = 0; i < n; i++) {j++;
}

线性对数阶 O(nlogn)

for (int i = 0; i < n; i++) {int j = 1while (j < n) { j *=2; }
}

平法阶 O(n^2)
立方阶 O(n^3)
指数阶 O(2^n)

三、空间复杂度

算法的渐进空间复杂度:S(n) = O(g(n))
影响因素:1、算法本身要占用的空间 输入/输出,指令,常数,变量等。2、算法执行过程临时空间。
常见的空间复杂度举例,例如 将一个 数组a中n个数 逆序 存储:
常数阶 O(1)

for (i = 0; i < n/2; i++) {tmp = a[i]; //只使用了一个临时变量 用来变换a[i] = a[n - 1 - i];a[n - 1 - i] = tmp;
}

线性阶 O(n)

for (i = 0; i < n; i++) { b[i] = a[n - 1 - i]; } // 使用了一个b[n]数组来反转
for (i = 0; i < n; i++) { a[i] = b[i]; } 

四、最坏/平均/最好 情况

根据输入数据初始状态不同,算法的执行次数和空间也会不同。例如 排序算法,输入数据规律不同,决定了选择算法类型执行的次数不同。 算法分析主要由以下三种情况(以时间复杂度举例)。

1、最坏 时间 复杂度

最坏的情况下,时间复杂度,也就是最高阶执行操作的最大执行次数。通常情况大家讨论时间复杂度 都是 讨论这个问题,最关注这个。

2、平均 时间 复杂度

在所有输入可能概念相同的情况,算法执行时间的数学期望(最具实际意义)。

3、最好 时间 复杂度

在这里插入图片描述

这篇关于简图记录-算法复杂度分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/241775

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺