我tmd 烦死了,没有数据集?不好意思,我要白嫖!

2023-10-19 16:40

本文主要是介绍我tmd 烦死了,没有数据集?不好意思,我要白嫖!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI算法与图像处理”,选择加"星标"或“置顶

重磅干货,第一时间送达


推荐阅读31个Python实战项目教你掌握图像处理,PDF开放下载opencv_contrib扩展模块中文教程pdf,限时领取

上一篇我们讲到了如何白嫖一些免费的GPU

白嫖GPU,我们是认真的!

人工智能的发展离不开:数据、算法、算力 今天要分享的内容是关于数据如何获取 除了一些开源的数据集以及手动标注以外,我们是否还有其他办法获取呢?答案肯定是有的 我们可以利用一些平台提供的接口来白嫖数据集,来训练我们自己的模型,这样就变成我们的东西了,小机灵鬼,这是实际工作中非常有用。

当然要注意,调用这些平台的接口,实际上你的数据和标注数据也同样被平台获取了,如果是机密的数据,不建议这样子用。

本文以预测颜值的数据集获取为例,来进行分析

推荐项目:https://github.com/HCIILAB/SCUT-FBP5500-Database-Release (含数据集)

预测颜值可以看做是分类问题,也可以是回归问题。但无论是采用哪种方法去做,最基础的是要获取一张图片中人脸的位置信息 + 对应的颜值评分 

测试图片:

结果:

看上去好像很复杂,实际上这些都可以用一个json来存储 描述一下json的信息 指出人脸的坐标,颜值,年龄等信息

接下来就是如何通过这些平台开放的免费接口来白嫖了 以百度的为例

大致步骤:

1、注册

2、代码编写

今天我们以百度的API 为例,获取颜值评分等标注信息。

1、注册账号

首先需要去 百度云平台(当然也可以去其他开放平台)注册一个账号,并创建一个应用 具体如下: 

平台的地址:https://login.bce.baidu.com/?account=&redirect=http%3A%2F%2Fconsole.bce.baidu.com%2Fai%2F#/ai/roboticvision/overview/index

注册 & 应用创建说明:

http://www.atyun.com/35233.html

按照上述教程,创建应用之后,获取我们最关心的三个东西:

AppID、API Key、 Secret Key

接下来看一下我们可以白嫖的内容有哪些

可以白嫖的东西很多,包括文字识别、身份证识别、车票识别、以及我们今天要用的颜值预测(属于人脸属性分析这块) 具体链接:https://cloud.baidu.com/product/face/detect

不过这些都是有一定限制的,比如每日的调用次数,毕竟白嫖嘛,不能太嚣张了

查看可以调用的类型 具体网址:

https://console.bce.baidu.com/ai/?_=1611544091386#/ai/roboticvision/overview/index 

官方提供了一个在线上传获取结果的接口,但是对于我们来说,这远远不够。 

 

因此,我们需要一个脚本能够批量的获取这些数据。

2、代码实现

from time import sleep
from aip import AipFace
import cv2
import base64
import numpy as np
import os
import traceback
import json
import tqdm
##cv2转base64
def cv2_base64(image):base64_str = cv2.imencode('.jpg', image)[1].tobytes()base64_str = base64.b64encode(base64_str)return base64_str
##base64转cv2
def base64_cv2(base64_str):imgString = base64.b64decode(base64_str)nparr = np.fromstring(imgString, np.uint8)image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)return image""" 你的 APPID AK SK """ 
APP_ID = '*****'
API_KEY = '*****'
SECRET_KEY = '*****'client = AipFace(APP_ID, API_KEY, SECRET_KEY)
imageType = "BASE64"
""" 如果有可选参数 """
options = {}
options["face_field"] = "age,beauty"
options["max_face_num"] = 2
options["face_type"] = "LIVE"
options["liveness_control"] = "LOW"error_time = 0
def predict(img_path):"""使用百度API 调用接口 返回人脸相关数据(年龄,颜值,矩形框位置等等):param img_path: 图片路径:return:"""result = {"error_code": -1}try:# opencv 方式读取 读取出来为numpyimg_cv = cv2.imread(img_path)img_cv = A.SmallestMaxSize(256)(image=img_cv)["image"]# numpy -> base64 注意需要在最后加个 decodeimage = cv2_base64(img_cv).decode('utf-8')for i in range(3):""" 带参数调用人脸检测 """result = client.detect(image, imageType, options)error_code = result["error_code"]if error_code == 0 or error_code == 222202:return resultsleep(1.0)print(f"the {i+1} try error!")print(img_path)print(result)except Exception as e:print(traceback.format_exc())return resultdef write_label_json(label_json_path, result):"""将json写入到指定的文件下:param label_json_path:写入的文件名称:param result: 字典:return:"""with open(label_json_path, "w") as f:json.dump(result,f)def write_log(log_path, msg):with open(log_path, "a+") as f:f.write(msg)def make_label_json(root_path, img_path_name):"""label制作:param root_path: 数据集存在的根目录:param img_path_name: 图片存在的目录名称:return:"""img_root_path = os.path.join(root_path, img_path_name)img_name_ls = os.listdir(img_root_path)img_path_ls = [os.path.join(img_root_path, img_name) for img_name in img_name_ls]label_root_path = os.path.join(root_path, "label_json")if not os.path.exists(label_root_path):os.mkdir(label_root_path)log_path = os.path.join(root_path, "error_img.txt")write_log(log_path, "-----------------------------------\n")error_json_dir_path = os.path.join(root_path, "error_json")if not os.path.exists(error_json_dir_path):os.mkdir(error_json_dir_path)success_counts = 0for i, img_path in tqdm.tqdm(list(enumerate(img_path_ls))):result = predict(img_path)img_name = img_name_ls[i]name, ext = os.path.splitext(img_name)label_name = name + ".json"label_json_path = os.path.join(label_root_path, label_name)if result["error_code"] != 0:write_log(log_path, img_path + "\n")write_label_json(os.path.join(error_json_dir_path, label_name), result)else:success_counts += 1write_label_json(label_json_path, result)sleep(0.5)if i % 100 == 0:print("成功检测:", success_counts)print("成功检测:", success_counts)root_path = "./"
img_path_name = "test"
make_label_json(root_path, img_path_name)

可能存在的问题:

# 1、no module named 'aip'
pip install baidu_aip
# 2、如果需要在vscode 中方便的查看 json文件, 可以考虑
# 安装json-tools
使用 ctrl + alt + m,切换显示风格

文件格式

将所有需要标注的图片,都放在 test 文件夹下

最终输出结果会报错在 error_json和 label_json 文件夹下

打开一个json文件看看里面的内容:

可以看到有我们需要的颜值信息(beauty),人脸位置、年龄信息等等

剩下的就是将获取的标注信息转换成模型需要的格式即

总结

是不是非常的实用

利用现有平台和工具生产我们所需要的东西,是非常重要的技能,如果对你有帮助,可以给我来三连!这是我周末加班写文章的动力!


个人微信(如果没有备注不拉群!)
请注明:地区+学校/企业+研究方向+昵称下载1:何恺明顶会分享
在「AI算法与图像处理」公众号后台回复:何恺明,即可下载。总共有6份PDF,涉及 ResNet、Mask RCNN等经典工作的总结分析
下载2:终身受益的编程指南:Google编程风格指南
在「AI算法与图像处理」公众号后台回复:c++,即可下载。历经十年考验,最权威的编程规范!下载3 CVPR2020在「AI算法与图像处理」公众号后台回复:CVPR2020,即可下载1467篇CVPR 2020论文
觉得不错就点亮在看吧

这篇关于我tmd 烦死了,没有数据集?不好意思,我要白嫖!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/241046

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类