利用ArcGIS和Python计算路网密度

2023-10-19 12:50

本文主要是介绍利用ArcGIS和Python计算路网密度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ArcGIS

相交

利用ArcGIS里面的相交工具,每个省把路标识了。
路网属性表

计算几何

分别计算路网的长度和各省的面积。
中国各省面积表

Python

利用Python对属性数据进行处理

导入相关模块

## 导入相关模块
import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt%matplotlib inline

解决中文乱码

plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']# 替换sans-serif字体为黑体
plt.rcParams['axes.unicode_minus'] = False   # 解决坐标轴负数的负号显示问题

数据读取

regibns = gpd.GeoDataFrame.from_file("省级行政区.shp")
regibns = regibns[["NAME","AREA","geometry"]]
regibns["AREA"] = regibns["AREA"]/1000000
regibns.head()
regibns.plot()

中国地图

road = gpd.GeoDataFrame.from_file("道路密度.shp")
road.head()
road = road[["NAME", "length", "geometry"]]
road.plot()

主要公路分布图

数据透视

pivot = pd.pivot_table(road, index="NAME",values="length",aggfunc=sum)
pivot.head()

数据连接

results = pd.merge(regibns, pivot, on="NAME")
results["Density"] = results["length"] / results["AREA"]
results.head()

道路密度表

数据可视化

data_geod = gpd.GeoDataFrame(results)data_geod['coords'] = data_geod['geometry'].apply(lambda x: x.representative_point().coords[0])
data_geod.plot(figsize=(12, 12), column='Density', scheme='quantiles', legend=True, cmap='Reds', edgecolor='k')
for n, i in enumerate(data_geod['coords']):plt.text(i[0], i[1], data_geod['NAME'][n], size=12)plt.title('中国各省主要公路密度图', size=25)
plt.grid(True, alpha=0.3)

中国各省主要公路密度图

总结和反思

因为arcpy只支持python2,我用ArcGIS Pro的python3,也没有geopandas模块,所以在两个软件切换了。在ArcGIS中注意坐标系,我们计算面积和长度都是在投影坐标系下进行的。还有那个大神可以告诉我geopandas里面我的线图层和面图层怎么叠加,就是在这个底图的基础上加入路网图层。

这篇关于利用ArcGIS和Python计算路网密度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/239900

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.