复杂网络画图——基于python networkx 以及clique算法划分社区

2023-10-19 09:50

本文主要是介绍复杂网络画图——基于python networkx 以及clique算法划分社区,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本人因为研究(谈不上研究,就是借鉴大佬们的方法)的是这个方向,发现使用python的不是很多,而且有些比较模糊,本人就自己的理解,分析在学习这个途中遇到的一些问题以及解决的办法,希望对你们有帮助,码字不易,顺带点个赞呗~


author:xiao黄
缓慢而坚定的生长


安装networkx 这里就不过多讲述了,可以参考我的一篇博客。传送门

画无向图

import networkx as nx
import matplotlib.pyplot as plt# matplotlib中文支持
plt.rcParams['font.sans-serif'] = ['SimHei']  #aaaaa.py 步骤一(替换sans-serif字体)
plt.rcParams['axes.unicode_minus'] = False  # 步骤二(解决坐标轴负数的负号显示问题)G = nx.Graph([('李家春','吴雪梅'),('吴雪梅','占刚'),('李家春','周元康'),('李家春','杨桃月')])
nx.draw_networkx(G)
plt.show()

结果显示:
在这里插入图片描述
其中一些修改节点颜色、节点大小等操作可以参考我的一篇博文有讲到。传送门

clique算法简介

在社会网络中大多数人认为clique的本质含义是“最大的完全子图”(maximal complete sub-graph)。也就是说派系是这样的一个点的子集(sub-set),其中任何一对点都有一条直边相连接,并且该派系不被其他任何派系所包含。如下图所示,一个3-成员的派系有3条边,一个4-成员的派系有6条边,一个5-成员的派系有10条边,以此类推,一个n-成员的派系有n(n-1)/2条边。
在这里插入图片描述
如果两个k-clique之间存在k-1个共同的节点,那么就称这两个clique是“相邻”的。彼此相邻的这样一串clique构成最大集合,就可以称为一个社区(而且这样的社区是可以重叠的,即所谓的overlapping community,就是说有些节点可以同时属于多个社区)。下面第一组图表示两个3-clique形成了一个社区,第二组图是一个重叠社区的示意图。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

networkx中clique渗透算法接口如下

k_clique_communities(G, k, cliques=None)
Find k-clique communities in graph using the percolation method.A k-clique community is the union of all cliques of size k that can be reached through adjacent (sharing k-1 nodes) k-cliques.Parameters
G : NetworkX graphk : int Size of smallest cliquecliques: list or generator Precomputed cliques (use networkx.find_cliques(G))Returns
Yields sets of nodes, one for each k-clique community.

导入:

from networkx.algorithms.community import k_clique_communities

解决matplotlib中文不显示问题:

增加两行代码即可:

# matplotlib中文支持
plt.rcParams['font.sans-serif'] = ['SimHei']  #aaaaa.py 步骤一(替换sans-serif字体)
plt.rcParams['axes.unicode_minus'] = False  # 步骤二(解决坐标轴负数的负号显示问题)

划分社区

无权无向图为例
先上代码:

import csv
import timeimport matplotlib.pyplot as plt
import networkx as nx
import pandas as pd
from networkx.algorithms.community import k_clique_communities# matplotlib中文支持
plt.rcParams['font.sans-serif'] = ['SimHei']  #aaaaa.py 步骤一(替换sans-serif字体)
plt.rcParams['axes.unicode_minus'] = False  # 步骤二(解决坐标轴负数的负号显示问题)# 一个简单的找社区的方法
def find_community(graph,k):return list(k_clique_communities(graph,k))def read_csv(path):'''读取的是一个csv文件返回一个一一对应的二元组'''csv_reader = csv.reader(open(path, encoding='gbk'))x,y,z = [],[],[]for row in csv_reader:x.append(row[0]) # 作者ay.append(row[1]) # 作者bfor i in zip(x,y):z.append(i)return zpath = 'C:\\Users\\HKZ\\Desktop\\SN\\t-nodes.csv'
g = nx.Graph(read_csv(path))# 可选布局
fig,ax = plt.subplots(figsize=(8,6))
layout = [nx.shell_layout,nx.circular_layout,nx.fruchterman_reingold_layout,nx.circular_layout,nx.kamada_kawai_layout,nx.spring_layout]
# pos = layout[5](g) # 根据布局方式生成每个节点的位置坐标
# pos = spring_layout(g)
NodeId = list(g.nodes())
node_size = [g.degree(i)**1.2*90 for i in NodeId]
options = {'node_size': node_size,'line_color': 'grey','linewidths': 0.2,'width': 0.4,'node_color': node_size, # 节点的颜色,节点越大颜色越浅'font_color': 'b' # 字体颜色}
nx.draw(g, pos=nx.circular_layout(g), ax=ax, with_labels=True, **options)#pos=nx.spring_layout(G)这句给定了节点的布局为spring型,
#- circular_layout:节点在一个圆环上均匀分布 
#- random_layout:节点随机分布 
#- shell_layout:节点在同心圆上分布 
#- spring_layout: 用Fruchterman-Reingold算法排列节点(这个算法我不了解,样子类似多中心放射状)print ("图的节点数:%d" % g.number_of_nodes()) # 节点数
print ("图的边数:%d" % g.number_of_edges()) # 边数#调用kclique社区算法
for k in range(3,6):print ("############# k值: %d ################" % k)start_time = time.clock()rst_com = find_community(g,k)end_time = time.clock()print ("计算耗时(秒):%.3f" % (end_time-start_time))print ("生成的社区数:%d" % len(rst_com)) # 可以查看社区print(rst_com) # 查看社区 # 会有重叠 会有舍弃
plt.show()

结果显示图片:
在这里插入图片描述
当然可以根据自己想要的形状去调节,代码注释部分有。
社区划分结果:
在这里插入图片描述

参考的文章:

https://blog.csdn.net/a_step_further/article/details/51176977?locationNum=10&fps=1

这篇关于复杂网络画图——基于python networkx 以及clique算法划分社区的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/239009

相关文章

Python的pip在命令行无法使用问题的解决方法

《Python的pip在命令行无法使用问题的解决方法》PIP是通用的Python包管理工具,提供了对Python包的查找、下载、安装、卸载、更新等功能,安装诸如Pygame、Pymysql等Pyt... 目录前言一. pip是什么?二. 为什么无法使用?1. 当我们在命令行输入指令并回车时,一般主要是出现以

Python解决雅努斯问题实例方案详解

《Python解决雅努斯问题实例方案详解》:本文主要介绍Python解决雅努斯问题实例方案,雅努斯问题是指AI生成的3D对象在不同视角下出现不一致性的问题,即从不同角度看物体时,物体的形状会出现不... 目录一、雅努斯简介二、雅努斯问题三、示例代码四、解决方案五、完整解决方案一、雅努斯简介雅努斯(Janu

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

使用Python和SQLAlchemy实现高效的邮件发送系统

《使用Python和SQLAlchemy实现高效的邮件发送系统》在现代Web应用中,邮件通知是不可或缺的功能之一,无论是订单确认、文件处理结果通知,还是系统告警,邮件都是最常用的通信方式之一,本文将详... 目录引言1. 需求分析2. 数据库设计2.1 User 表(存储用户信息)2.2 CustomerO

使用Python实现实时金价监控并自动提醒功能

《使用Python实现实时金价监控并自动提醒功能》在日常投资中,很多朋友喜欢在一些平台买点黄金,低买高卖赚点小差价,但黄金价格实时波动频繁,总是盯着手机太累了,于是我用Python写了一个实时金价监控... 目录工具能干啥?手把手教你用1、先装好这些"食材"2、代码实现讲解1. 用户输入参数2. 设置无头浏

一文教你如何解决Python开发总是import出错的问题

《一文教你如何解决Python开发总是import出错的问题》经常朋友碰到Python开发的过程中import包报错的问题,所以本文将和大家介绍一下可编辑安装(EditableInstall)模式,可... 目录摘要1. 可编辑安装(Editable Install)模式到底在解决什么问题?2. 原理3.

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async

Python实现剪贴板历史管理器

《Python实现剪贴板历史管理器》在日常工作和编程中,剪贴板是我们使用最频繁的功能之一,本文将介绍如何使用Python和PyQt5开发一个功能强大的剪贴板历史管理器,感兴趣的可以了解下... 目录一、概述:为什么需要剪贴板历史管理二、功能特性全解析2.1 核心功能2.2 增强功能三、效果展示3.1 主界面

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ