【电力系统】基于YALMIP 的微网(光伏+风电+蓄电池+微电网+柴油机)优化调度模型附matlab代码

本文主要是介绍【电力系统】基于YALMIP 的微网(光伏+风电+蓄电池+微电网+柴油机)优化调度模型附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机  电力系统

⛄ 内容介绍

⛄ 部分代码

%% 请先确保YALMIP工具箱和CPLEX正确安装,MATLAB导入对应文件,否则无法运行程序!!

%% 初始化

clc;

clear all;close all;

%yalmip;

%Cplex;

%% 各变量及常量定义

%------------------------变量定义-----------------------%

Pw=sdpvar(1,24,'full'); %风机出力

Ppv=sdpvar(1,24,'full');%光伏出力

Pbat=sdpvar(1,24,'full');%蓄电池出力

% Pde=sdpvar(1,24,'full');%柴油机组出力

Pnet=sdpvar(1,24,'full');%交换功率

Pbuy=sdpvar(1,24,'full');%从电网购电电量

Psell=sdpvar(1,24,'full');%向电网售电电量

Temp_net=binvar(1,24,'full'); % 购|售电标志

Temp_cha=binvar(1,24,'full'); %充电标志

Temp_dis=binvar(1,24,'full'); %放电标志

Temp_static=binvar(1,24,'full'); %电池静置标志

% Temp_de=binvar(1,24,'full'); %柴油机发电标志

Pcha=sdpvar(1,24);

Pdis=sdpvar(1,24);

Constraints = [];

%-------------------------常量定义-----------------------%

Load=[88.24  83.01  80.15  79.01  76.07  78.39  89.95  128.85  155.45  176.35  193.71  182.57  179.64  166.31  164.61  164.61  174.48  203.93  218.99  238.11  216.14  173.87  131.07  94.04];

%风机预测出力

Pw=[66.9 68.2 71.9 72 78.8 94.8 114.3 145.1 155.5 142.1 115.9 127.1 141.8 145.6...

    145.3 150 206.9 225.5 236.1 210.8 198.6 177.9 147.2 58.7];

%光伏预测出力

Ppv=[0 0 0 0 0.06 6.54 20.19 39.61 49.64 88.62 101.59 66.78 110.46 67.41 31.53...

    50.76 20.6 22.08 2.07 0 0 0 0 0];

%分时电价

C_buy=[0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.53 0.53 0.53 0.82 0.82...

    0.82 0.82 0.82 0.53 0.53 0.53 0.82 0.82 0.82 0.53 0.53 0.53];

C_sell=[0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.42 0.42 0.42 0.65 0.65...

    0.65 0.65 0.65 0.42 0.42 0.42 0.65 0.65 0.65 0.42 0.42 0.42];

%储能电池参数定义

Ebattery = 300;

soc0     = 0.5;

socmin   = 0.3;

socmax   = 0.95;

Pcs      = 40 ;

POWER    = 160 ;

figure;

plot(Load      ,'r-*','LineWidth',1.5);

axis([1 24 0 240]) ;

xlabel('时间(h)','FontSize',14);

set(gca,'xTick',(1:2:24),'yTick',(0:40:240));

ylabel('功率(kw)','FontSize',14);

hold on; 

plot(Pw        ,'g-d','LineWidth',1.5);

axis([1 24 0 240]) ;

xlabel('时间(h)','FontSize',14);

set(gca,'xTick',(1:2:24),'yTick',(0:40:240));

ylabel('功率(kw)','FontSize',14);

hold on; 

plot(Ppv      ,'b-o','LineWidth',1.5);

axis([1 24 0 240]) ;

xlabel('时间(h)','FontSize',14);

set(gca,'xTick',(1:2:24),'yTick',(0:40:240));

ylabel('功率(kw)','FontSize',14);

legend('电负荷','风机预测出力','光伏预测出力');

%% 约束

for k = 1:24

  Constraints = [Constraints, -POWER<=Pnet(1,k)<=POWER,0<=Pbuy(1,k)<=POWER, -POWER<=Psell(1,k)<=0]; %主网功率交换约束,不大于160kW

  Constraints = [Constraints,Pnet(1,k)+Pw(1,k)+Ppv(1,k)==Load(1,k)+Pbat(1,k)];              %功率平衡约束   ,电网+风电+光伏 = 负载 + 电池充电

  Constraints = [Constraints, implies(Temp_net(1,k),[Pnet(1,k)>=0,Pbuy(1,k)==Pnet(1,k),Psell(1,k)==0])]; %购电情况约束   Pnet>0是购电,Pnet<0是售电电,

  Constraints = [Constraints, implies(1-Temp_net(1,k),[Pnet(1,k)<=0,Psell(1,k)==Pnet(1,k),Pbuy(1,k)==0])]; %售电情况约束

%----------------------蓄电池约束--------------------%

% sum_bat=zeros(1,24);

  Constraints = [Constraints, -Pcs<=Pbat(1,k)<=Pcs,0<=Pcha(1,k)<=Pcs,-Pcs<=Pdis(1,k)<=0];%电池充放电约束,PCS功率是40kW

  Constraints = [Constraints, implies(Temp_cha(1,k),[Pbat(1,k)>=0,Pcha(1,k)==Pbat(1,k),Pdis(1,k)==0])];%充电情况约束

  Constraints = [Constraints, implies(Temp_dis(1,k),[Pbat(1,k)<=0,Pdis(1,k)==Pbat(1,k),Pcha(1,k)==0])];%放电情况约束

  Constraints = [Constraints, implies(Temp_static(1,k),[Pbat(1,k)==0,Pdis(1,k)==0,Pcha(1,k)==0])];%静置情况约束

  Constraints = [Constraints,Temp_cha(1,k)+Temp_dis(1,k)+Temp_static(1,k)==1];

%    sum_bat(1,k+1)=sum_bat(1,k)+Pcha(1,k)+Pdis(1,k);%计算SOC

  Constraints=[Constraints,Ebattery*(socmin - soc0)<=sum(Pdis(1,1:k)+Pcha(1,1:k))<=Ebattery*(socmax - soc0)] ;%SOC约束,电池容量300kwh,初始S0C为0.4,0.3<=SOC<=0.95

end

  Constraints=[Constraints,sum(Pdis+Pcha)==0] ;%ST=S0,始末SOC相等约束

%% 目标函数

 F=0;

%------------------总费用--------------------%

for k = 1:24

  F = F + 0.52*Pw(:,k)+0.72*Ppv(:,k)+C_buy(:,k)*Pbuy(:,k)+C_sell(:,k)*Psell(1,k)+0.2*Pdis(1,k);

end

ops=sdpsettings('solver', 'cplex');%参数指定程序用cplex求解器

optimize(Constraints,F,ops);

disp(['总费用=']);value(F) 

%% 画图

x=1:24;

PP=[Pbuy;-Pdis;Pw;Ppv];

PP_neg=[Psell;-Pcha];

figure

bar(PP','stack');hold on;

bar(PP_neg','stack');hold on;

plot(x,value(Load),'r','linewidth',2);

xlabel('时间(h)','FontSize',16);

set(gca,'xTick',(1:2:24),'yTick',(0:50:300));

ylabel('功率(kw)','FontSize',16);

legend('电网购电','蓄电池放电','风机出力','光伏出力','电网售电','蓄电池充电','负荷');

hold off;

figure

plot(x,value(Pbuy+Psell),'r-*','LineWidth',1.5);

hold on;

plot(x,value(Pdis+Pcha),'b-o','LineWidth',1.5);

hold off;

xlabel('时间(h)','FontSize',16);

set(gca,'xTick',(1:2:24),'yTick',(-120:20:60));

ylabel('功率(kw)','FontSize',16);

legend('电网交互功率曲线','储能交互功率曲线');

soc = zeros(1,25);

s = zeros(1,25);

soc(1)=soc0;

for k=1:24

    s(k)=value(sum(Pdis(1,1:k)+Pcha(1,1:k)))/Ebattery+soc0;

    soc(k+1)=s(k);

end

soc(1)=soc0;

xx=0:24;

figure

% yyaxis left

subplot(211)

plot(xx,soc,'b-*','LineWidth',1.5);

hold on

ylabel('soc值');

title('SOC曲线')

% yyaxis right

subplot(212)

bar(Pdis',0.5,'stack')

hold on

bar(Pcha',0.5,'stack')

xlabel('时间(h)');

title('蓄电池SOC状态');

legend('电池充电','电池放电');

⛄ 运行结果

⛄ 参考文献

[1]孔得壮. 计及动态需求响应的热电联产型微网竞价优化策略[D]. 重庆大学, 2019.

[2]王怡云, 吴雷. 基于改进天牛群算法的微电网优化调度[J]. 电子测量技术, 2020, 43(16):6.​

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

这篇关于【电力系统】基于YALMIP 的微网(光伏+风电+蓄电池+微电网+柴油机)优化调度模型附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238484

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查