偏最小二乘算法(PLS)回归建模 (Matlab代码实现)

2023-10-19 07:30

本文主要是介绍偏最小二乘算法(PLS)回归建模 (Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

           目录

 

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码


💥1 概述

在实际问题中,经常遇到需要研究两组多重相关变量间的相互依赖关系,并研究用一组变量(常称为自变量或预测变量)去预测另一组变量(常称为因变量或响应变量),除了最小二乘准则下的经典多元线性回归分析(MLR),提取自变量组主成分的主成分回归分析(PCR)等方法外,还有近年发展起来的偏最小二乘(PLS)回归方法。 

偏最小二乘回归提供一种多对多线性回归建模的方法,特别当两组变量的个数很多,且都存在多重相关性,而观测数据的数量(样本量)又较少时,用偏最小二乘回归建立的模型具有传统的经典回归分析等方法所没有的优点。 

偏最小二乘回归分析在建模过程中集中了主成分分析,典型相关分析和线性回归分析方法的特点,因此在分析结果中,除了可以提供一个更为合理的回归模型外,还可以同时完成一些类似于主成分分析和典型相关分析的研究内容,提供更丰富、深入的一些信息。 

本文介绍偏最小二乘回归分析的建模方法;通过例子从预测角度对所建立的回归模型进行比较。

📚2 运行结果

 

 

 

 

 

 

🎉3 参考文献

[1]陆洪涛. 偏最小二乘回归数学模型及其算法研究[D].华北电力大学,2014.

👨‍💻4 Matlab代码

主函数部分代码:

clc;
clear;
%% 数据导入

load('RAW.mat');
RAW1=RAW(:,:);
RAW=RAW1(:,1:254);
LLL=RAW1(:,255);
[oo, pp]=size(RAW);
temp = randperm(oo);
data_train = RAW(temp(1:300),:);
target_out = LLL(temp(1:300),:);
data_predict = RAW(temp(301:end),:);
predict_out = LLL(temp(301:end),:);


%% 数据处理
var=[data_train,target_out];
mu=mean(var);  %求均值
sig=std(var);  %求标准差
rr=corrcoef(var);   %求相关系数矩阵
ab=zscore(var); %数据标准化
a=ab(:,[1:254]);b=ab(:,end);  %提出标准化后的自变量和因变量数据
[XL,YL,XS,YS,BETA,PCTVAR,MSE,stats] =plsregress(a,b);
xw=a\XS;  %求自变量提出成分系数
yw=b\YS;  %求因变量提出成分的系数
a_0=PCTVAR(1,:);b_0=PCTVAR(2,:);%PCTVAR是一个两行的矩阵,第一行为自变量提取成分的贡献率,第二行为因变量提取成分的贡献率
a_1=cumsum(a_0);b_1=cumsum(b_0);

%% 判断提出成分对的个数
i=1;
while ((a_1(i)<0.95)&&(a_0(i)>0.05)&&(b_1(i)<0.95)&&(b_0(i)>0.05))
    i=i+1;
end
ncomp=i;
fprintf('主成分个数为:%d\n',ncomp);
fprintf('%d对成分分别为:\n',ncomp);
for i=1:ncomp
    fprintf('第%d对成分:\n',i);
    fprintf('u%d=',i);
    for k=1:254  %此处为变量x的个数
        fprintf('+(%f*x_%d)',xw(k,i),k);
    end
    fprintf('\n');
        fprintf('v%d=',i);
    for k=1  %此处为变量y的个数,假如因变量是3个的话就要写成1:3
        fprintf('+(%f*y_%d)',yw(k,i),k);
    end
    fprintf('\n');
end

这篇关于偏最小二乘算法(PLS)回归建模 (Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238291

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too