PLS-DA分类的实现(基于sklearn)

2023-10-19 07:30
文章标签 实现 分类 da sklearn pls

本文主要是介绍PLS-DA分类的实现(基于sklearn),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简单介绍

代码实现

数据集划分

选择因子个数

模型训练并分类

调用函数


简单介绍

(此处取自各处资料)    

    PLS-DA既可以用来分类,也可以用来降维,与PCA不同的是,PCA是无监督的,PLS-DA是有监督的。与PCA不同,PCA是无监督,PLS是“有监督”模式的偏最小二乘法分析,当样本组间差异大而组内差异小时,无监督分析方法可以很好的区分组间差异。反之样本组间差异不大,无监督的方法就难以区分组间差异。另外如果组间的差异较小,各组的样本量相差较大,样本量大的那组将会主导模型。有监督的分析(PLS-DA)能够很好的解决这些问题。也就是在分析数据时,已知样本的分组关系,这样可以更好的选择区分各组的特征变量,确定样本之间的关系。DA是判别分析,PLS-DA用偏最小二乘回归的方法,在对数据“降维”的同时,建立了回归模型,并对回归结果进行判别分析。

    本文主要是基于PLS的分类展开。

代码实现

主要参考了这位大佬的: https://zhuanlan.zhihu.com/p/374412915

数据集划分

    首先要把数据集处理成一定的格式,也就是把自变量和因变量搞清楚,做好数据集的分割,然后传回。

def deal_data(path):# 读取自变量和因变量构成的数据矩阵,类别y放最后一列,前面均为xspec = pd.read_excel(path)spec = np.array(spec)  # 直接转化为numpy类型x = spec[:, 0:-1]  # 前面的列均为自变量y = spec[:,-1]# 先做一个数据集的划分train_X, test_X, train_y, test_y = train_test_split(x, y, test_size=0.2)return train_X, test_X, train_y, test_y

选择因子个数

    PLS类似于PCA,是有成分这么一个说法的,不同的成分个数最终得到的效果也不一样,因此我们对于不同的成分个数均进行训练,然后进行交叉验证,观察不同成分个数的表现,从而选择合适的个数。

def accuracy_component(xc, xv, yc, yv, component=8, n_fold=5):# xc表示训练集,xv表示测试集,yc表示训练标签,yv表示测试标签,component表示最多个数,n_fold表示分为几组样本(每次一组作为测试集,交叉验证)k_range = np.linspace(start=1, stop=component, num=component)kf = KFold(n_splits=n_fold, random_state=None, shuffle=True)  # n_splits表示要分割为多少个K子集,交叉验证需要accuracy_validation = np.zeros((1, component))  # 用于存储各个成分数的测试平均精准度accuracyaccuracy_train = np.zeros((1, component))  # 用于存储各个成分数的训练平均精准度accuracyfor j in range(component):  # j∈[0,component-1],j+1∈[1,component]p = 0acc = 0  # acc表示总的精准度,p表示个数,acc/p平均精确度# 下面是普通训练model_pls = PLSRegression(n_components=j + 1)  # 此时选择component个成分yc_labels = pd.get_dummies(yc)model_pls.fit(xc, yc_labels)y_pred = model_pls.predict(xv)y_pred = np.array([np.argmax(i) for i in y_pred])accuracy_train[:, j] = accuracy_score(yv, y_pred)  # 这是直接训练的# 下面是交叉验证for train_index, test_index in kf.split(xc):  # 进行n_fold轮交叉验证# 划分数据集X_train, X_test = xc[train_index], xc[test_index]y_train, y_test = yc[train_index], yc[test_index]YC_labels = pd.get_dummies(y_train)  # 训练数据结果独热编码model_1 = PLSRegression(n_components=j + 1)model_1.fit(X_train, YC_labels)Y_pred = model_1.predict(X_test)Y_pred = np.array([np.argmax(i1) for i1 in Y_pred])  # 独热编码转化成类别变量acc = accuracy_score(y_test, Y_pred) + accp = p + 1accuracy_validation[:, j] = acc / p  # 计算j+1个成分的平均精准度# 首先对于每个component数训练一个模型,然后利用测试集得出准确率print('模型训练的准确率')print(accuracy_train)# 然后对样本的训练集进行交叉验证print('交叉验证的平均准确率')print(accuracy_validation)plt.plot(k_range, accuracy_train.T, 'o-', label="Training", color="r")plt.plot(k_range, accuracy_validation.T, 'o-', label="Cross-validation", color="b")plt.xlabel("N components")plt.ylabel("Score")plt.legend(loc="best")  # 选取最佳位置标注图注plt.rc('font', family='Times New Roman')plt.rcParams['font.size'] = 10plt.show()return accuracy_validation, accuracy_train

    下面是运行效果,因为数据是乱造的所以参数就不用关注了,这样来看的话三到四个因子效果还不错。

模型训练并分类

    下面就是选择合适的成分个数进行分类,得到混淆矩阵和一些参数指标。

def PLS_DA(train_X, test_X, train_y, test_y):# 建模model = PLSRegression(n_components=6)train_y = pd.get_dummies(train_y)model.fit(train_X, train_y)# 预测y_pred = model.predict(test_X)# 将预测结果(类别矩阵)转换为数值标签y_pred = np.array([np.argmax(i) for i in y_pred])# 模型评价---混淆矩阵和精度print('测试集混淆矩阵为:\n', confusion_matrix(test_y, y_pred))print('平均分类准确率为:\n', accuracy_score(test_y, y_pred))

     运行效果,至少比乱分类的33%正确率要高。

调用函数

     以上都是各个组件,最后需要一个主函数调用串联起来,如下,    建议分步调用,也便于问题的发现和处理。

max_component = 8 # 迭代最大成分数
n_fold = 10  # 交叉验证次数
excel_path = './data.xlsx'  # 数据集地址
if __name__ == '__main__':train_X, test_X, train_y, test_y = deal_data(excel_path)  # 处理数据,返回处理完的训练和测试集,具体情况具体分析# accuracy_component(train_X, test_X, train_y, test_y, max_component, n_fold)PLS_DA(train_X, test_X, train_y, test_y,n_components=3)

这篇关于PLS-DA分类的实现(基于sklearn)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238290

相关文章

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM