PLS-DA分类的实现(基于sklearn)

2023-10-19 07:30
文章标签 实现 分类 da sklearn pls

本文主要是介绍PLS-DA分类的实现(基于sklearn),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简单介绍

代码实现

数据集划分

选择因子个数

模型训练并分类

调用函数


简单介绍

(此处取自各处资料)    

    PLS-DA既可以用来分类,也可以用来降维,与PCA不同的是,PCA是无监督的,PLS-DA是有监督的。与PCA不同,PCA是无监督,PLS是“有监督”模式的偏最小二乘法分析,当样本组间差异大而组内差异小时,无监督分析方法可以很好的区分组间差异。反之样本组间差异不大,无监督的方法就难以区分组间差异。另外如果组间的差异较小,各组的样本量相差较大,样本量大的那组将会主导模型。有监督的分析(PLS-DA)能够很好的解决这些问题。也就是在分析数据时,已知样本的分组关系,这样可以更好的选择区分各组的特征变量,确定样本之间的关系。DA是判别分析,PLS-DA用偏最小二乘回归的方法,在对数据“降维”的同时,建立了回归模型,并对回归结果进行判别分析。

    本文主要是基于PLS的分类展开。

代码实现

主要参考了这位大佬的: https://zhuanlan.zhihu.com/p/374412915

数据集划分

    首先要把数据集处理成一定的格式,也就是把自变量和因变量搞清楚,做好数据集的分割,然后传回。

def deal_data(path):# 读取自变量和因变量构成的数据矩阵,类别y放最后一列,前面均为xspec = pd.read_excel(path)spec = np.array(spec)  # 直接转化为numpy类型x = spec[:, 0:-1]  # 前面的列均为自变量y = spec[:,-1]# 先做一个数据集的划分train_X, test_X, train_y, test_y = train_test_split(x, y, test_size=0.2)return train_X, test_X, train_y, test_y

选择因子个数

    PLS类似于PCA,是有成分这么一个说法的,不同的成分个数最终得到的效果也不一样,因此我们对于不同的成分个数均进行训练,然后进行交叉验证,观察不同成分个数的表现,从而选择合适的个数。

def accuracy_component(xc, xv, yc, yv, component=8, n_fold=5):# xc表示训练集,xv表示测试集,yc表示训练标签,yv表示测试标签,component表示最多个数,n_fold表示分为几组样本(每次一组作为测试集,交叉验证)k_range = np.linspace(start=1, stop=component, num=component)kf = KFold(n_splits=n_fold, random_state=None, shuffle=True)  # n_splits表示要分割为多少个K子集,交叉验证需要accuracy_validation = np.zeros((1, component))  # 用于存储各个成分数的测试平均精准度accuracyaccuracy_train = np.zeros((1, component))  # 用于存储各个成分数的训练平均精准度accuracyfor j in range(component):  # j∈[0,component-1],j+1∈[1,component]p = 0acc = 0  # acc表示总的精准度,p表示个数,acc/p平均精确度# 下面是普通训练model_pls = PLSRegression(n_components=j + 1)  # 此时选择component个成分yc_labels = pd.get_dummies(yc)model_pls.fit(xc, yc_labels)y_pred = model_pls.predict(xv)y_pred = np.array([np.argmax(i) for i in y_pred])accuracy_train[:, j] = accuracy_score(yv, y_pred)  # 这是直接训练的# 下面是交叉验证for train_index, test_index in kf.split(xc):  # 进行n_fold轮交叉验证# 划分数据集X_train, X_test = xc[train_index], xc[test_index]y_train, y_test = yc[train_index], yc[test_index]YC_labels = pd.get_dummies(y_train)  # 训练数据结果独热编码model_1 = PLSRegression(n_components=j + 1)model_1.fit(X_train, YC_labels)Y_pred = model_1.predict(X_test)Y_pred = np.array([np.argmax(i1) for i1 in Y_pred])  # 独热编码转化成类别变量acc = accuracy_score(y_test, Y_pred) + accp = p + 1accuracy_validation[:, j] = acc / p  # 计算j+1个成分的平均精准度# 首先对于每个component数训练一个模型,然后利用测试集得出准确率print('模型训练的准确率')print(accuracy_train)# 然后对样本的训练集进行交叉验证print('交叉验证的平均准确率')print(accuracy_validation)plt.plot(k_range, accuracy_train.T, 'o-', label="Training", color="r")plt.plot(k_range, accuracy_validation.T, 'o-', label="Cross-validation", color="b")plt.xlabel("N components")plt.ylabel("Score")plt.legend(loc="best")  # 选取最佳位置标注图注plt.rc('font', family='Times New Roman')plt.rcParams['font.size'] = 10plt.show()return accuracy_validation, accuracy_train

    下面是运行效果,因为数据是乱造的所以参数就不用关注了,这样来看的话三到四个因子效果还不错。

模型训练并分类

    下面就是选择合适的成分个数进行分类,得到混淆矩阵和一些参数指标。

def PLS_DA(train_X, test_X, train_y, test_y):# 建模model = PLSRegression(n_components=6)train_y = pd.get_dummies(train_y)model.fit(train_X, train_y)# 预测y_pred = model.predict(test_X)# 将预测结果(类别矩阵)转换为数值标签y_pred = np.array([np.argmax(i) for i in y_pred])# 模型评价---混淆矩阵和精度print('测试集混淆矩阵为:\n', confusion_matrix(test_y, y_pred))print('平均分类准确率为:\n', accuracy_score(test_y, y_pred))

     运行效果,至少比乱分类的33%正确率要高。

调用函数

     以上都是各个组件,最后需要一个主函数调用串联起来,如下,    建议分步调用,也便于问题的发现和处理。

max_component = 8 # 迭代最大成分数
n_fold = 10  # 交叉验证次数
excel_path = './data.xlsx'  # 数据集地址
if __name__ == '__main__':train_X, test_X, train_y, test_y = deal_data(excel_path)  # 处理数据,返回处理完的训练和测试集,具体情况具体分析# accuracy_component(train_X, test_X, train_y, test_y, max_component, n_fold)PLS_DA(train_X, test_X, train_y, test_y,n_components=3)

这篇关于PLS-DA分类的实现(基于sklearn)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238290

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库