python处理数据地图投影有白线

2023-10-18 17:50

本文主要是介绍python处理数据地图投影有白线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       最近课程的老师让介绍一下自己用过的资料,我寻思着在最后加一张用资料画的图,然后就发现了这个问题(以前怎么没发现?疑惑.jpg)

简单的画了一个高度场(500hPa)叠加温度场的图(NCEP的再分析资料)

 代码如下:

import xarray as xr
import matplotlib.pyplot as plt#绘图
import cartopy.crs as ccrs#投影
import numpy as np
from cartopy.mpl.ticker import LongitudeFormatter,LatitudeFormatter#经纬度
f1 = xr.open_dataset('C:/Users/24448/Desktop/air.1952.nc')
f2 = xr.open_dataset('C:/Users/24448/Desktop/hgt.1952.nc')
fig = plt.figure(figsize=(10,6),dpi=500)
crs = ccrs.PlateCarree(180)
ax1 = fig.add_subplot(1,1,1,projection=crs)
lon = f1.lon
lat = f1.lat
air = f1.air.loc['1952-01-01',500,:,:]-273.15
hgt = f2.hgt.loc['1952-01-01',500,:,:]/10
cf = ax1.contourf(lon,lat,air,levels=np.arange(-50,1,5),
                  cmap=plt.cm.RdBu_r,transform=ccrs.PlateCarree())

cycle_hgt, cycle_lon = add_cyclic_point(hgt, coord=lon)
cs = ax1.contour(cycle_lon,lat,cycle_hgt,colors='k',linewidth=0.3)
ax1.clabel(cs,fontsize=10)

ax1.set_xticks(np.arange(0,358,60),crs=ccrs.PlateCarree())
ax1.set_yticks([-90,-60,-30,0,30,60,90],crs=ccrs.PlateCarree())
ax1.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label =False))
ax1.yaxis.set_major_formatter(LatitudeFormatter())

ax1.tick_params(which='major',direction='out',length=10,width=0.99,pad=1,labelsize=16,
                        bottom=True, left=True, right=False,top=False)
ax1.set_title('temperature_height',loc='left',pad=15,fontsize=20)#标题
ax1.set_title('1952-01-01_500hPa',loc='right',pad=15,fontsize=20)
ax1.set_xlabel('Longtitude',fontsize=15)#x轴标签
ax1.set_ylabel('Latitude',fontsize=15)#y轴标签
ax1.coastlines(facecolor='None', edgecolor='0.1', linewidth=0.5)

ax=fig.add_axes([0.93,0.18,0.03,0.65])  # 0.25控制距离左边的距离,0.01控制距离下面的距离,最后两位控制color的长度和厚度
cb=fig.colorbar(cf,cax=ax,shrink=0.9,pad=0.04,aspect=15,orientation='vertical')
cb.ax.tick_params(labelsize=15)
plt.show()
#fig.savefig('c:/Users/24448/Desktop/haiqi.png',format='png')
可以发现,填色图一切正常,但是等值线图180°处有一条空缺,找到了一些解决办法,有点半懂不懂,最后在摸鱼大佬的B站视频上找到了解决办法,摸鱼大佬牛逼!!(呐喊.jpg)  

解决方法是导入cartopy中的一个函数,然后在画等值线之前使用这个函数,如下:

from cartopy.util import add_cyclic_point

完整代码如下:

import xarray as xr
import matplotlib.pyplot as plt#绘图
import cartopy.crs as ccrs#投影
import numpy as np
from cartopy.util import add_cyclic_point#去除投影中间白线
from cartopy.mpl.ticker import LongitudeFormatter,LatitudeFormatter#经纬度
f1 = xr.open_dataset('C:/Users/24448/Desktop/air.1952.nc')
f2 = xr.open_dataset('C:/Users/24448/Desktop/hgt.1952.nc')
fig = plt.figure(figsize=(10,6),dpi=500)
crs = ccrs.PlateCarree(180)
ax1 = fig.add_subplot(1,1,1,projection=crs)
lon = f1.lon
lat = f1.lat
air = f1.air.loc['1952-01-01',500,:,:]-273.15
hgt = f2.hgt.loc['1952-01-01',500,:,:]/10
cf = ax1.contourf(lon,lat,air,levels=np.arange(-50,1,5),
                  cmap=plt.cm.RdBu_r,transform=ccrs.PlateCarree())

cycle_hgt, cycle_lon = add_cyclic_point(hgt, coord=lon)
cs = ax1.contour(cycle_lon,lat,cycle_hgt,colors='k',linewidth=0.3)
ax1.clabel(cs,fontsize=10)

ax1.set_xticks(np.arange(0,358,60),crs=ccrs.PlateCarree())
ax1.set_yticks([-90,-60,-30,0,30,60,90],crs=ccrs.PlateCarree())
ax1.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label =False))
ax1.yaxis.set_major_formatter(LatitudeFormatter())

ax1.tick_params(which='major',direction='out',length=10,width=0.99,pad=1,labelsize=16,
                        bottom=True, left=True, right=False,top=False)
ax1.set_title('temperature_height',loc='left',pad=15,fontsize=20)#标题
ax1.set_title('1952-01-01_500hPa',loc='right',pad=15,fontsize=20)
ax1.set_xlabel('Longtitude',fontsize=15)#x轴标签
ax1.set_ylabel('Latitude',fontsize=15)#y轴标签
ax1.coastlines(facecolor='None', edgecolor='0.1', linewidth=0.5)

ax=fig.add_axes([0.93,0.18,0.03,0.65])  # 0.25控制距离左边的距离,0.01控制距离下面的距离,最后两位控制color的长度和厚度
cb=fig.colorbar(cf,cax=ax,shrink=0.9,pad=0.04,aspect=15,orientation='vertical')
cb.ax.tick_params(labelsize=15)
plt.show()
#fig.savefig('c:/Users/24448/Desktop/haiqi.png',format='png')

结果如图:

 现在就一切正常了。

若文章有问题,还望不吝赐教!

ps:气象小白,python小白,刚刚读研。愿诸君前程似锦,你我共勉!

这篇关于python处理数据地图投影有白线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234197

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序