时间序列预测18:ConvLSTM 实现用电量/发电量预测

2023-10-18 16:30

本文主要是介绍时间序列预测18:ConvLSTM 实现用电量/发电量预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


【时间序列预测/分类】 全系列60篇由浅入深的博文汇总:传送门


接上文,本文介绍了ConvLSTM模型实现用电量/发电量预测。


LSTM 处理用电量/发电量预测任务的文章:

【Part1】Encoder-Decoder LSTM 模型 实现用电量/发电量预测
【Part2】CNN-LSTM 模型 实现用电量/发电量预测
【Part3】本文


文章目录

  • 1. ConvLSTM
    • 1.1 CNN 模型
    • 1.2 完整代码
  • 扩展
  • 总结


1. ConvLSTM

1.1 CNN 模型

CNN-LSTM方法的进一步扩展是执行CNN的卷积(例如CNN如何读取输入序列数据)作为LSTM的一部分用于每个时间步。这种组合称为ConvLSTM,与CNN-LSTM一样,它也用于时空数据。与直接读取数据以计算内部状态和状态转换的LSTM不同,与解释CNN模型输出的CNN-LSTM也不同,ConvLSTM直接使用卷积作为读取LSTM单元输入的一部分。Keras库提供了ConvLSTM2D类,该类支持二维数据的ConvLSTM模型。它可以配置为一维多变量时间序列预测。默认情况下,ConvLSTM2D类要求输入数据的形状为:[samples,timesteps,rows,cols,channels]

其中数据的每个时间步均定义为(行×列)数据点的图像。我们正在处理总功耗的一维序列,如果我们假设我们使用两周的数据作为输入,则行为1,列为14。ConvLSTM将一次读取这些数据,即LSTM读取一个14天的时间步长,并在这些时间步长上进行卷积。

在我们的任务中,可以将14天分成两个子序列,每个子序列的长度为7天。然后,ConvLSTM可以读取两个时间步长,并对每个时间步长中的7天数据执行CNN处理。因此,对于此问题的选定框架,ConvLSTM2D的输入shape为:[n,2,1,7,1]。参数说明:

  • 样本(samples):n,表示训练数据集中的样本数。
  • 时间步长(timesteps):2,表示将一个窗口宽度为14天的采样数据分为两个子序列。
  • 行(rows):1,表示每个子序列的一维形状,即有多少行。
  • 列(cols):7,表示每个子序列,有多少列。
  • 通道(channels):1,在图像识别任务中的概念,通道数。在时间序列预测任务中其实就是特征数(features),这个概念在之前的文章中反复提及强调。因为本例的业务需求是通过日总功耗来预测下周的日总功耗,所以通道数(特征数)为1,即代表日总功耗。如果要添加其他的特征,这个尺寸要做相应改变。再看下数据集情况,就一目了然了。
    在这里插入图片描述
    还可以探索其他配置,例如使用前21天的总功耗作为输入,并将其分为3个子序列,和/或提供所有八个功能或通道作为输入。ConvLSTM2D的数据输入要求必须将训练数据集重塑为[样本,时间步长,行,列,通道]([samples, timesteps, rows, cols, channels])的结构。对比CNN-LSTM完整代码,需要在此基础上做如下修改:

1. 重塑训练样本的shape:

train_x = train_x.reshape((train_x.shape[0], n_steps, 1, n_length, n_features))

2. 设定ConvLSTM模型的输入尺寸参数:

model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu',input_shape=(sw_width, 1, n_length, n_features)))
model.add(Flatten())

3. 重塑测试样本的shape:

input_x = input_x.reshape((1, sw_width, 1, n_length, 1))

1.2 完整代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 设置中文显示
plt.rcParams['font.sans-serif'] = ['Microsoft JhengHei']
plt.rcParams['axes.unicode_minus'] = Falseimport math
import sklearn.metrics as skm
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.layers import RepeatVector, TimeDistributed
from tensorflow.keras.layers import ConvLSTM2Ddef split_dataset(data):'''该函数实现以周为单位切分训练数据和测试数据'''# data为按天的耗电量统计数据,shape为(1442, 8)# 测试集取最后一年的46周(322天)数据,剩下的159周(1113天)数据为训练集,以下的切片实现此功能。train, test = data[1:-328], data[-328:-6]train = np.array(np.split(train, len(train)/7)) # 将数据划分为按周为单位的数据test = np.array(np.split(test, len(test)/7))return train, testdef evaluate_forecasts(actual, predicted):'''该函数实现根据预期值评估一个或多个周预测损失思路:统计所有单日预测的 RMSE'''scores = list()for i in range(actual.shape[1]):mse = skm.mean_squared_error(actual[:, i], predicted[:, i])rmse = math.sqrt(mse)scores.append(rmse)s = 0 # 计算总的 RMSEfor row in range(actual.shape[0]):for col in range(actual.shape[1]):s += (actual[row, col] - predicted[row, col]) ** 2score = math.sqrt(s / (actual.shape[0] * actual.shape[1]))print('actual.shape[0]:{}, actual.shape[1]:{}'.format(actual.shape[0], actual.shape[1]))return score, scoresdef summarize_scores(name, score, scores):s_scores = ', '.join(['%.1f' % s for s in scores])print('%s: [%.3f] %s\n' % (name, score, s_scores))def sliding_window(train, sw_width=7, n_out=7, in_start=0):'''该函数实现窗口宽度为7、滑动步长为1的滑动窗口截取序列数据'''data = train.reshape((train.shape[0] * train.shape[1], train.shape[2])) # 将以周为单位的样本展平为以天为单位的序列X, y = [], []for _ in range(len(data)):in_end = in_start + sw_widthout_end = in_end + n_out# 保证截取样本完整,最大元素索引不超过原序列索引,则截取数据;否则丢弃该样本if out_end < len(data):# 训练数据以滑动步长1截取train_seq = data[in_start:in_end, 0]train_seq = train_seq.reshape((len(train_seq), 1))X.append(train_seq)y.append(data[in_end:out_end, 0])in_start += 1return np.array(X), np.array(y)def conv_lstm_model(train, sw_width, n_steps, n_length, in_start=0, verbose_set=0, epochs_num=20, batch_size_set=4):'''该函数定义 Encoder-Decoder LSTM 模型'''train_x, train_y = sliding_window(train, sw_width, in_start=0)n_timesteps, n_features, n_outputs = train_x.shape[1], train_x.shape[2], train_y.shape[1]train_x = train_x.reshape((train_x.shape[0], n_steps, 1, n_length, n_features))train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1))model = Sequential()model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu',input_shape=(n_steps, 1, n_length, n_features)))model.add(Flatten())model.add(RepeatVector(n_outputs))model.add(LSTM(200, activation='relu', return_sequences=True))model.add(TimeDistributed(Dense(100, activation='relu')))model.add(TimeDistributed(Dense(1)))model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])print(model.summary())model.fit(train_x, train_y,epochs=epochs_num, batch_size=batch_size_set, verbose=verbose_set)return modeldef forecast(model, pred_seq, sw_width, n_length, n_steps):'''该函数实现对输入数据的预测'''data = np.array(pred_seq)data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))input_x = data[-sw_width:, 0] # 获取输入数据的最后一周的数据input_x = input_x.reshape((1, n_steps, 1, n_length, 1))yhat = model.predict(input_x, verbose=0) # 预测下周数据yhat = yhat[0] # 获取预测向量return yhatdef evaluate_model(model, train, test, sd_width, n_length, n_steps):'''该函数实现模型评估'''history_fore = [x for x in train]predictions = list() # 用于保存每周的前向验证结果;for i in range(len(test)):yhat_sequence = forecast(model, history_fore, sd_width, n_length, n_steps) # 预测下周的数据predictions.append(yhat_sequence) # 保存预测结果history_fore.append(test[i, :]) # 得到真实的观察结果并添加到历史中以预测下周predictions = np.array(predictions) # 评估一周中每天的预测结果score, scores = evaluate_forecasts(test[:, :, 0], predictions)return score, scoresdef model_plot(score, scores, days, name):'''该函数实现绘制RMSE曲线图'''plt.figure(figsize=(8,6), dpi=150)plt.plot(days, scores, marker='o', label=name)plt.grid(linestyle='--', alpha=0.5)plt.ylabel(r'$RMSE$', size=15)plt.title('Conv-LSTM 模型预测结果',  size=18)plt.legend()plt.show()def main_run(dataset, sw_width, days, name, in_start, verbose, epochs, batch_size, n_steps, n_length):'''主函数:数据处理、模型训练流程'''# 划分训练集和测试集train, test = split_dataset(dataset.values)# 训练模型model = conv_lstm_model(train, sw_width,  n_steps, n_length, in_start, verbose_set=0, epochs_num=20, batch_size_set=4)# 计算RMSEscore, scores = evaluate_model(model, train, test, sw_width, n_length, n_steps)# 打印分数summarize_scores(name, score, scores)# 绘图model_plot(score, scores, days, name)if __name__ == '__main__':dataset = pd.read_csv('household_power_consumption_days.csv', header=0, infer_datetime_format=True, engine='c',parse_dates=['datetime'], index_col=['datetime'])days = ['sun', 'mon', 'tue', 'wed', 'thr', 'fri', 'sat']name = 'Conv-LSTM'# 定义序列的数量和长度'''n_steps:子序列划分的数量,本例为2,将14天的数据划分为两个7的子序列;n_length:子序列每行的元素数,即列数。'''n_steps, n_length = 2, 7sliding_window_width= n_length * n_stepsinput_sequence_start=0epochs_num=20batch_size_set=16verbose_set=0main_run(dataset, sliding_window_width, days, name, input_sequence_start,verbose_set, epochs_num, batch_size_set, n_steps, n_length)

输出:

Model: "sequential_12"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv_lst_m2d_2 (ConvLSTM2D)  (None, 1, 5, 64)          50176     
_________________________________________________________________
flatten_3 (Flatten)          (None, 320)               0         
_________________________________________________________________
repeat_vector_8 (RepeatVecto (None, 7, 320)            0         
_________________________________________________________________
lstm_16 (LSTM)               (None, 7, 200)            416800    
_________________________________________________________________
time_distributed_16 (TimeDis (None, 7, 100)            20100     
_________________________________________________________________
time_distributed_17 (TimeDis (None, 7, 1)              101       
=================================================================
Total params: 487,177
Trainable params: 487,177
Non-trainable params: 0
_________________________________________________________________
None
actual.shape[0]:46, actual.shape[1]:7
Conv-LSTM: [382.156] 391.3, 386.4, 340.5, 388.9, 364.4, 309.1, 473.6

运行示例总结测试集的性能。实验表明,使用两个卷积层使模型比仅使用单个层更稳定。可以看到,在这种情况下,该模型表现较好,总体RMSE得分约为382千瓦。


扩展

  • 输入大小:探索模型的输入天数,例如3天,21天,30天等等。
  • 模型调整:调整模型的结构和超参数,并进一步提升模型性能。
  • 数据缩放:探索是否可以使用数据缩放(例如标准化和规范化)来改善LSTM模型的性能。
  • 学习诊断:使用诊断(例如训练的学习曲线和验证损失以及均方误差)来帮助调整LSTM模型的结构和超参数。

总结

三篇文章介绍了如何开发LSTM来进行家庭用电量的多步时间序列预测。主要有以下内容:

  • 如何开发和评估用于多步时间序列预测的单变量和多变量Encoder-Decoder LSTM 模型。
  • 如何开发和评估用于多步时间序列预测的CNN-LSTM Encoder-Decoder 模型。
  • 如何开发和评估用于多步时间序列预测的ConvLSTM Encoder-Decoder 模型。

关于时间序列预测用电量预测任务先告一段落,下篇文章开始介绍时间序列分类任务,比如人类行为识别,车辆驾驶行为识别。


这篇关于时间序列预测18:ConvLSTM 实现用电量/发电量预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_39653948/article/details/105447616
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/233790

相关文章

SpringBoot实现多环境配置文件切换

《SpringBoot实现多环境配置文件切换》这篇文章主要为大家详细介绍了如何使用SpringBoot实现多环境配置文件切换功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 示例代码结构2. pom文件3. application文件4. application-dev文

Python FastAPI实现JWT校验的完整指南

《PythonFastAPI实现JWT校验的完整指南》在现代Web开发中,构建安全的API接口是开发者必须面对的核心挑战之一,本文将深入探讨如何基于FastAPI实现JWT(JSONWebToken... 目录一、JWT认证的核心原理二、项目初始化与环境配置三、安全密码处理机制四、JWT令牌的生成与验证五、

Python使用Turtle实现精确计时工具

《Python使用Turtle实现精确计时工具》这篇文章主要为大家详细介绍了Python如何使用Turtle实现精确计时工具,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录功能特点使用方法程序架构设计代码详解窗口和画笔创建时间和状态显示更新计时器控制逻辑计时器重置功能事件

Linux给磁盘扩容(LVM方式)的方法实现

《Linux给磁盘扩容(LVM方式)的方法实现》本文主要介绍了Linux给磁盘扩容(LVM方式)的方法实现,涵盖PV/VG/LV概念及操作步骤,具有一定的参考价值,感兴趣的可以了解一下... 目录1 概念2 实战2.1 相关基础命令2.2 开始给LVM扩容2.3 总结最近测试性能,在本地打数据时,发现磁盘空

Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)

《Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)》本文主要介绍了Golang分布式锁实现,采用Redis+Lua脚本确保原子性,持可重入和自动续期,用于防止超卖及重复下单,具有一定... 目录1 概念应用场景分布式锁必备特性2 思路分析宕机与过期防止误删keyLua保证原子性可重入锁自动

golang 对象池sync.Pool的实现

《golang对象池sync.Pool的实现》:本文主要介绍golang对象池sync.Pool的实现,用于缓存和复用临时对象,以减少内存分配和垃圾回收的压力,下面就来介绍一下,感兴趣的可以了解... 目录sync.Pool的用法原理sync.Pool 的使用示例sync.Pool 的使用场景注意sync.

IDEA实现回退提交的git代码(四种常见场景)

《IDEA实现回退提交的git代码(四种常见场景)》:本文主要介绍IDEA实现回退提交的git代码(四种常见场景),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.已提交commit,还未push到远端(Undo Commit)2.已提交commit并push到

Kotlin Compose Button 实现长按监听并实现动画效果(完整代码)

《KotlinComposeButton实现长按监听并实现动画效果(完整代码)》想要实现长按按钮开始录音,松开发送的功能,因此为了实现这些功能就需要自己写一个Button来解决问题,下面小编给大... 目录Button 实现原理1. Surface 的作用(关键)2. InteractionSource3.

java对接第三方接口的三种实现方式

《java对接第三方接口的三种实现方式》:本文主要介绍java对接第三方接口的三种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录HttpURLConnection调用方法CloseableHttpClient调用RestTemplate调用总结在日常工作

golang中slice扩容的具体实现

《golang中slice扩容的具体实现》Go语言中的切片扩容机制是Go运行时的一个关键部分,它确保切片在动态增加元素时能够高效地管理内存,本文主要介绍了golang中slice扩容的具体实现,感兴趣... 目录1. 切片扩容的触发append 函数的实现2. runtime.growslice 函数gro