DeepAR代码详析(pytorch版)实现用电量预测

2023-10-18 16:30

本文主要是介绍DeepAR代码详析(pytorch版)实现用电量预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepAR代码详析(pytorch版)实现用电量预测 – 潘登同学的RNN学习笔记

文章目录

    • DeepAR代码详析(pytorch版)实现用电量预测 -- 潘登同学的RNN学习笔记
  • 数据集说明
    • 数据预处理代码
  • 构造模型
    • Loss函数
    • 评估指标相关
  • utils工具类
  • 训练模型

前言: 上次用Amazon中的glount-ts框架做了一个deepar的股价预测,但是我感觉用的是人家的API,不太好,所以今天来搂一把pytorch的deepar,看看效果如何

数据集说明

数据集说明

  • 2011 ~2014期间;
  • 370 个 家庭的用电量;
  • 频率为 15分钟,但是取的时候是以一个小时为单位取的;

下载地址,下载好解压后放到./data/elect/目录下

超参数

  • 滑动窗口长度: 192 换算为天数为 192/24 = 8
  • 已知序列(上下文)长度: 168 换算为天数 168/24 = 7
  • 预测序列长度: 24 换算为天数 24/24 = 1

了解数据预处理之前,我们需要明确我们的输入与输出

  • 输入:上下文长度的协变量(covariates) X t X_t Xt与上一时刻的结果 Z t − 1 Z_{t-1} Zt1,加上一个指示向量(表示哪一户人家,one-hot形式)
  • 输出:这一时刻的结果 Z t Z_t Zt

训练集与测试集

  • 训练集的开始时间是: 2011-01-01 00:00:00
  • 训练集的结束时间是: 2014-08-31 23:00:00
  • 测试集的开始时间是: 2014-08-25 00:00:00 因为要有7天的上下文
  • 测试集的结束时间是: 2014-09-07 23:00:00

数据预处理的几个关键

  • 有些家庭可能在2011的时候没有入住或者没有开始使用,要将前面全零的这部分去掉
  • 该文是将数据的时间维度按照星期几、小时数(比如上午8:00)、月份当作了协变量
  • 对协变量做数据归一化的时候,是按照协变量级别来做的(将所有家庭,所有时间点的星期几这一变量放到一起做归一化),因为在这里协变量都是周而复始的,所有家庭都共用相同的协变量,所以对对所有时间点,所有家庭的协变量做归一化其实跟只将所有家庭的写变量分不同时间点做归一化是一样的;我认为在协变量不同的情况下,就比如股价预测,每个公司的四价一量都不一样,如果做归一化的话(当前时间点的四价一量与过去时间点的四价一量表达的含义一定不一样),应该对每个时间点做归一化;

在这里插入图片描述

数据预处理代码

建议先把数据下载下来,不然会很慢

在这里插入图片描述

构造模型

deepAR的模型本质上是一个RNN,RNN cell使用的是LSTM,只是在最后输出接了两个全连接层,一个是预测均值的,一个是预测标准差的(一开始我认为只要接一个就可以,最后输出两个神经元即可,后来发现标准差的那个要经过一个softplus激活函数,这个激活函数是relu的一个改进版本,最后接这个的目的也是为了保证标准差为正)

输入的时候,还将one-hot经过embedding层(这都是比较常规的操作啦)

在这里插入图片描述

Loss函数

Loss的构造比较容易理解,在论文中我都没太看懂loss,但是代码里面我看懂了;思路就是根据预测出来的均值与标准差重构一个正态分布,再计算对数似然(就是计算label在该分布下的对数概率),最小化负平均似然即可

在这里插入图片描述

评估指标相关

在这里插入图片描述

utils工具类

工具函数中写了很多params,画图,评估函数,保存模型等的工具类,总之复用性很高,可以借鉴,我这里也贴出来

在这里插入图片描述

训练模型

训练模型这个操作就比较常规了,不详细讲解了,这个的日志写的也不错,贴一下吧;然后test也在evaluate中被调用,所以就没必要另说test了,test的代码也在构造模型中,也比较简单,是一个decoder的过程

在这里插入图片描述

写在最后,该代码不是我写的,源码在github上获取,这里只是我的解读,不懂的可以跟我探讨,总的来说我认为这个pytorch的复现版本写的很优秀,如果想改的话,只需要改改数据预处理部分即可; 如果真的想用该源码做股价预测,就改数据预处理部分吧…

这篇关于DeepAR代码详析(pytorch版)实现用电量预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233786

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依