大数据开发中的秘密武器:探索Hadoop纠删码的奇妙世界

2023-10-18 16:15

本文主要是介绍大数据开发中的秘密武器:探索Hadoop纠删码的奇妙世界,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着大数据技术的发展,HDFS作为Hadoop的核心模块之一得到了广泛的应用。为了系统的可靠性,HDFS通过复制来实现这种机制。但在HDFS中每一份数据都有两个副本,这也使得存储利用率仅为1/3,每TB数据都需要占用3TB的存储空间。因此,在保证可靠性的前提下如何提高存储利用率已成为当前HDFS面对的主要问题之一。Hadoop 3.0 引入了纠删码技术(Erasure Coding),它可以提高50%以上的存储利用率,并且保证数据的可靠性。

一、什么是EC

起源

纠删码 (Erasure Code)

纠删码技术起源于通信传输领域,后被逐渐运用到存储系统中。它对数据进行分块,然后计算出一些冗余的校验块。当一部分数据块丢失时,可以通过剩余的数据块和校验块计算出丢失的数据块。

Facebook 的开源项目HDFS-RAID在HDFS之上使用了纠删码技术。HDFS-RAID对属于同一文件的块分组并依次生成校验块,将这些校验块构成独立的文件,并与原始的数据文件一一对应。RaidNode作为一个新的角色被引入进来,它负责从DataNode中读取文件的数据块,计算出校验块, 并写入校验文件中;同时,它还周期性地检查被编码了的文件是否存在块丢失,如有丢失则重新进行计算以恢复丢失的块。

HDFS-RAID的优点是其构建于HDFS之上,不需要修改HDFS本已经复杂的内部逻辑,但缺点也显而易见:校验文件对用户是可见的,存在被误删除的可能;依赖于MySQL和MapReduce来存储元数据和生成校验文件;RaidNode需要周期性地查找丢失的块,加重了NameNode的负担;使用的编解码器性能较差,在实际应用中往往不能满足要求。另外,由于缺乏维护,HDFS已将HDFS-RAID的代码从contrib包中移除,这给使用HDFS-RAID带来不少困难。

发展

2014下半年,英特尔和Cloudera共同提出了将纠删码融入到HDFS内部的想法和设计(HDFS EC),随后吸引了包括Hortonworks、华为、Yahoo!等众多公司的参与,使之成为Hadoop开源社区较为活跃的一个项目。将纠删码融入到HDFS内部带来了诸多好处:它不再需要任何的外部依赖,用户使用起来更为方便;其代码成为HDFS的一部分,便于维护;可以充分利用HDFS的内部机制使性能得到最大程度的优化。纠删码的编解码性能对其在HDFS中的应用起着至关重要的作用,如果不利用硬件方面的优化就很难得到理想的性能。英特尔的智能存储加速库(ISA-L)提供了对纠删码编解码的优化,极大的提升了其性能。

二、EC原理

原理介绍

1. 在存储系统中,纠删码技术主要是通过利用纠删码算法将原始的数据进行编码得到校验,并将数据和校验一并存储起来,以达到容错的目的。其基本思想是将k块原始的数据元素通过一定的编码计算,得到m块校验元素。对于这k+m块元素,当其中任意的m块元素出错(包括数据和校验出错),均可以通过对应的重构算法恢复出原来的k块数据。生成校验的过程被成为编码(encoding),恢复丢失数据块的过程被称为解码(decoding)。

Reed-Solomon Codes缩写为RS码,使用复杂的线性代数运算来生成多个奇偶校验块,因此可以容忍多个数据块故障。RS码在使用的时候需指定2个参数RS(n, m),n代表的是数据块的数量,m代表的是校验块的数量,校验块由数据块编码产生。

2. RS编码的编码与解码原理如图1所示。编码时,利用生成矩阵B与数据列向量D的乘积得到信息列向量D+C;重构时,利用现存的信息列向量Survivors与对应的逆矩阵B'-1 乘积得到原数据列向量D,从而达到恢复原数据的目的。

91399391b72c1122e8e4e096c91d5232.jpeg

图1 RS编码的编码与重构原理

举例

举个例子:

比如:我们有 7、8、9 三个原始数据,通过矩阵乘法,计算出来两个校验数据 50、122。这时原始数据加上校验数据,一共五个数据:7、8、9、50、122,可以任意丢两个,然后通过算法进行恢复。

835c0d409421d9fcd1c8c20d70128f04.jpeg

我们再举个简单的例子:

8b82a17eb9d479e2e2325bd0ae6e823a.jpeg 60b8926ff9994e010bdf75d28155bcec.jpeg 4fd1a14868f9c0b8afdfa8e03d051de8.jpeg

三、HDFS EC方案

连续布局

对HDFS的一个普通文件来说,构成它的基本单位是块。对于EC模式下的文件,构成它的基本单位为块组。块组由一定数目的数据块加上生成的校验块放一起构成。以RS(6,3)为例,每一个块组包含1-6个数据块,以及3个校验块。进行EC编码的前提是每个块的长度一致。如果不一致,则应填充0。

数据被依次写入一个块中,一个块写满之后再写入下一个块,数据的这种分布方式被称为连续布局。在一些分布式文件系统如QFS和Ceph中,广泛使用另外一种布局:条形布局。条(stripe)是由若干个相同大小单元(cell)构成的序列。在条形布局下,数据被依次写入条的各个单元中,当条被写满之后就写入下一个条,一个条的不同单元位于不同的数据块中。

550bccd0ab77f1c4b2006fe9527e7b66.jpeg

文件数据被依次写入块中,一个块写满之后再写入下一个块,这种分布方式称为连续布局。

优点:

  • 容易实现
  • 方便和多副本存储策略进行转换

缺点:

  • 需要客户端缓存足够的数据块
  • 不适合存储小文件

条形布局

条(stripe)是由若干个相同大小的单元(cell)构成的序列。文件数据被依次写入条的各个单元中,当一个条写满之后再写入下一个条,一个条的不同单元位于不同的数据块中。这种分布方式称为条形布局。

优点:

  • 客户端缓存数据较少
  • 无论文件大小都适用

缺点:

  • 会影响一些位置敏感任务的性能,因为原先在一个节点上的块被分散到了多个不同的节点上。
  • 和多副本存储策略转换比较麻烦。
0e90adb7453db39ae44c22e425773021.jpeg

布局方案选择

对HDFS EC来说,首要的问题是选择什么样的布局方式。连续布局实现起来较为容易,但它只适合较大的文件。另外,如果让client端直接写一个连续布局文件需要缓存下足够的数据块,然后生成校验块并写入,以RS(6,3),blockSize=128M为例,client端需要缓存1.12G的数据,这点决定了连续布局的文件更适合由普通文件转化而来,而条形布局就不存在上述缺点。由于一个条的单元往往较小(通常为64K或1M),因此无论文件大小,条形布局都可以为文件节省出空间。client端在写完一个条的数据单元后就可以计算出校验单元并写出,因此client端需要缓存的数据很少。条形布局的一个缺点是会影响一些位置敏感任务的性能,因为原先在一个节点上的一个块被分散到了多个不同的节点上。

HDFS最初就是为较大文件设计的分布式文件系统,但随着越来越多的应用将数据存储于HDFS上,HDFS的小(即小于1个块组)文件数目越来越多,而且它们所占空间的比率也越来越高。以Cloudera一些较大客户的集群为例,小文件占整个空间的比例在36-97%之间。

基于以上分析,HDFS EC优先考虑对条形布局的支持。设计与实现也主要围绕已经实现了的条形布局展开。

四、EC的优势与劣势

优势

纠删码技术作为一门数据保护技术,自然有许多的优势,首先可以解决的就是目前分布式系统,云计算中采用副本来防止数据的丢失。副本机制确实可以解决数据丢失的问题,但是翻倍的数据存储空间也必然要被消耗,这一点却是非常致命的。EC技术的运用就可以直接解决这个问题。

劣势

EC技术的优势确实明显,但是他的使用也是需要一些代价的,一旦数据需要恢复,他会造成2大资源的消耗:

1、网络带宽的消耗,因为数据恢复需要去读其他的数据块和校验块。

2、进行编码,解码计算需要消耗CPU资源。

就是既耗网络又耗CPU。

总结

纠删码技术作为一门数据保护技术,自然有许多的优势。将纠删码技术融入到HDFS中,可以保证在同等(或者更高)可靠性的前提下,将存储利用率提高了一倍。同样的集群用户可以存储两倍的数据,这将大大减少用户硬件方面的开销。

对于EC,最好的选择是用于冷数据集群,有下面2点原因:

1. 冷数据集群往往有大量的长期没有被访问的数据,体量确实很大,采用EC技术,可以大大减少副本数。

2.冷数据集群基本稳定,耗资源量少,所以一旦进行数据恢复,将不会对集群造成大的影响。

出于上述2种原因,冷数据集群是一个很好的选择。

这篇关于大数据开发中的秘密武器:探索Hadoop纠删码的奇妙世界的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233715

相关文章

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片