NLP(六十四)使用FastChat计算LLaMA-2模型的token长度

2023-10-18 14:20

本文主要是介绍NLP(六十四)使用FastChat计算LLaMA-2模型的token长度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LLaMA-2模型部署

  在文章NLP(五十九)使用FastChat部署百川大模型中,笔者介绍了FastChat框架,以及如何使用FastChat来部署百川模型。
  本文将会部署LLaMA-2 70B模型,使得其兼容OpenAI的调用风格。部署的Dockerfile文件如下:

FROM nvidia/cuda:11.7.1-runtime-ubuntu20.04RUN apt-get update -y && apt-get install -y python3.9 python3.9-distutils curl
RUN curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
RUN python3.9 get-pip.py
RUN pip3 install fschat

Docker-compose.yml文件如下:

version: "3.9"services:fastchat-controller:build:context: .dockerfile: Dockerfileimage: fastchat:latestports:- "21001:21001"entrypoint: ["python3.9", "-m", "fastchat.serve.controller", "--host", "0.0.0.0", "--port", "21001"]fastchat-model-worker:build:context: .dockerfile: Dockerfilevolumes:- ./model:/root/modelimage: fastchat:latestports:- "21002:21002"deploy:resources:reservations:devices:- driver: nvidiadevice_ids: ['0', '1']capabilities: [gpu]entrypoint: ["python3.9", "-m", "fastchat.serve.model_worker", "--model-names", "llama2-70b-chat", "--model-path", "/root/model/llama2/Llama-2-70b-chat-hf", "--num-gpus", "2", "--gpus",  "0,1", "--worker-address", "http://fastchat-model-worker:21002", "--controller-address", "http://fastchat-controller:21001", "--host", "0.0.0.0", "--port", "21002"]fastchat-api-server:build:context: .dockerfile: Dockerfileimage: fastchat:latestports:- "8000:8000"entrypoint: ["python3.9", "-m", "fastchat.serve.openai_api_server", "--controller-address", "http://fastchat-controller:21001", "--host", "0.0.0.0", "--port", "8000"]

部署成功后,会占用2张A100,每张A100占用约66G显存。
  测试模型是否部署成功:

curl http://localhost:8000/v1/models

输出结果如下:

{"object": "list","data": [{"id": "llama2-70b-chat","object": "model","created": 1691504717,"owned_by": "fastchat","root": "llama2-70b-chat","parent": null,"permission": [{"id": "modelperm-3XG6nzMAqfEkwfNqQ52fdv","object": "model_permission","created": 1691504717,"allow_create_engine": false,"allow_sampling": true,"allow_logprobs": true,"allow_search_indices": true,"allow_view": true,"allow_fine_tuning": false,"organization": "*","group": null,"is_blocking": false}]}]
}

部署LLaMA-2 70B模型成功!

Prompt token长度计算

  在FastChat的Github开源项目中,项目提供了计算Prompt的token长度的API,文件路径为:fastchat/serve/model_worker.py,调用方法为:

curl --location 'localhost:21002/count_token' \
--header 'Content-Type: application/json' \
--data '{"prompt": "What is your name?"}'

输出结果如下:

{"count": 6,"error_code": 0
}

Conversation token长度计算

  在FastChat中计算Conversation(对话)的token长度较为麻烦。
  首先我们需要获取LLaMA-2 70B模型的对话配置,调用API如下:

curl --location --request POST 'http://localhost:21002/worker_get_conv_template'

输出结果如下:

{'conv': {'messages': [],'name': 'llama-2','offset': 0,'roles': ['[INST]', '[/INST]'],'sep': ' ','sep2': ' </s><s>','sep_style': 7,'stop_str': None,'stop_token_ids': [2],'system_message': 'You are a helpful, respectful and honest ''assistant. Always answer as helpfully as ''possible, while being safe. Your answers should ''not include any harmful, unethical, racist, ''sexist, toxic, dangerous, or illegal content. ''Please ensure that your responses are socially ''unbiased and positive in nature.\n''\n''If a question does not make any sense, or is not ''factually coherent, explain why instead of '"answering something not correct. If you don't ""know the answer to a question, please don't share "'false information.','system_template': '[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n'}}

  在FastChat中的对话文件(fastchat/conversation.py)中,提供了对话加工的代码,这里不再展示,使用时直接复制整个文件即可,该文件不依赖任何第三方模块。
  我们需要将对话按照OpenAI的方式加工成对应的Prompt,输入的对话(messages)如下:

messages = [{“role”: “system”, “content”: “You are Jack, you are 20 years old, answer questions with humor.”}, {“role”: “user”, “content”: “What is your name?”},{“role”: “assistant”, “content”: " Well, well, well! Look who’s asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend!“}, {“role”: “user”, “content”: “How old are you?”}, {“role”: “assistant”, “content”: " Oh, you want to know my age? Well, let’s just say I’m older than a bottle of wine but younger than a bottle of whiskey. I’m like a fine cheese, getting better with age, but still young enough to party like it’s 1999!”}, {“role”: “user”, “content”: “Where is your hometown?”}]

Python代码如下:

# -*- coding: utf-8 -*-
# @place: Pudong, Shanghai 
# @file: prompt.py
# @time: 2023/8/8 19:24
from conversation import Conversation, SeparatorStylemessages = [{"role": "system", "content": "You are Jack, you are 20 years old, answer questions with humor."}, {"role": "user", "content": "What is your name?"},{"role": "assistant", "content": " Well, well, well! Look who's asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend!"}, {"role": "user", "content": "How old are you?"}, {"role": "assistant", "content": " Oh, you want to know my age? Well, let's just say I'm older than a bottle of wine but younger than a bottle of whiskey. I'm like a fine cheese, getting better with age, but still young enough to party like it's 1999!"}, {"role": "user", "content": "Where is your hometown?"}]llama2_conv = {"conv":{"name":"llama-2","system_template":"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n","system_message":"You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.","roles":["[INST]","[/INST]"],"messages":[],"offset":0,"sep_style":7,"sep":" ","sep2":" </s><s>","stop_str":None,"stop_token_ids":[2]}}
conv = llama2_conv['conv']conv = Conversation(name=conv["name"],system_template=conv["system_template"],system_message=conv["system_message"],roles=conv["roles"],messages=list(conv["messages"]),  # prevent in-place modificationoffset=conv["offset"],sep_style=SeparatorStyle(conv["sep_style"]),sep=conv["sep"],sep2=conv["sep2"],stop_str=conv["stop_str"],stop_token_ids=conv["stop_token_ids"],)if isinstance(messages, str):prompt = messages
else:for message in messages:msg_role = message["role"]if msg_role == "system":conv.set_system_message(message["content"])elif msg_role == "user":conv.append_message(conv.roles[0], message["content"])elif msg_role == "assistant":conv.append_message(conv.roles[1], message["content"])else:raise ValueError(f"Unknown role: {msg_role}")# Add a blank message for the assistant.conv.append_message(conv.roles[1], None)prompt = conv.get_prompt()print(repr(prompt))

加工后的Prompt如下:

"[INST] <<SYS>>\nYou are Jack, you are 20 years old, answer questions with humor.\n<</SYS>>\n\nWhat is your name?[/INST]  Well, well, well! Look who's asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend! </s><s>[INST] How old are you? [/INST]  Oh, you want to know my age? Well, let's just say I'm older than a bottle of wine but younger than a bottle of whiskey. I'm like a fine cheese, getting better with age, but still young enough to party like it's 1999! </s><s>[INST] Where is your hometown? [/INST]"

  最后再调用计算Prompt的API(参考上节的Prompt token长度计算),输出该对话的token长度为199.
  我们使用FastChat提供的对话补充接口(v1/chat/completions)验证输入的对话token长度,请求命令为:

curl --location 'http://localhost:8000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--data '{"model": "llama2-70b-chat","messages": [{"role": "system", "content": "You are Jack, you are 20 years old, answer questions with humor."}, {"role": "user", "content": "What is your name?"},{"role": "assistant", "content": " Well, well, well! Look who'\''s asking the questions now! My name is Jack, but you can call me the king of the castle, the lord of the rings, or the prince of the pizza party. Whatever floats your boat, my friend!"}, {"role": "user", "content": "How old are you?"}, {"role": "assistant", "content": " Oh, you want to know my age? Well, let'\''s just say I'\''m older than a bottle of wine but younger than a bottle of whiskey. I'\''m like a fine cheese, getting better with age, but still young enough to party like it'\''s 1999!"}, {"role": "user", "content": "Where is your hometown?"}]
}'

输出结果为:

{"id": "chatcmpl-mQxcaQcNSNMFahyHS7pamA","object": "chat.completion","created": 1691506768,"model": "llama2-70b-chat","choices": [{"index": 0,"message": {"role": "assistant","content": " Ha! My hometown? Well, that's a tough one. I'm like a bird, I don't have a nest, I just fly around and land wherever the wind takes me. But if you really want to know, I'm from a place called \"The Internet\". It's a magical land where memes and cat videos roam free, and the Wi-Fi is always strong. It's a beautiful place, you should visit sometime!"},"finish_reason": "stop"}],"usage": {"prompt_tokens": 199,"total_tokens": 302,"completion_tokens": 103}
}

注意,输出的prompt_tokens为199,这与我们刚才计算的对话token长度的结果是一致的!

总结

  本文主要介绍了如何在FastChat中部署LLaMA-2 70B模型,并详细介绍了Prompt token长度计算以及对话(conversation)的token长度计算。希望能对读者有所帮助~
  笔者的一点心得是:阅读源码真的很重要。
  笔者的个人博客网址为:https://percent4.github.io/ ,欢迎大家访问~

参考网址

  1. NLP(五十九)使用FastChat部署百川大模型: https://blog.csdn.net/jclian91/article/details/131650918
  2. FastChat: https://github.com/lm-sys/FastChat

  欢迎关注我的公众号NLP奇幻之旅,原创技术文章第一时间推送。

  欢迎关注我的知识星球“自然语言处理奇幻之旅”,笔者正在努力构建自己的技术社区。

这篇关于NLP(六十四)使用FastChat计算LLaMA-2模型的token长度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233129

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(