用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...

本文主要是介绍用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

8.3 因子载荷矩阵的估计方法

(一)主成分分析法

回顾一下主成分法估计因子载荷矩阵的步骤:求出原变量协方差阵(或相关阵)的前 m 个特征根(考虑累积贡献率),后面的特征根忽略掉

因子载荷矩阵的每一列为前 m 个特征根乘上对应的单位特征向量

特殊因子的方差为 1 - 共同度(即因子载荷该行的平方和)

用原协方差阵减去公因子协方差阵与特殊因子协方差阵,得到残差阵

equation?tex=E%3D%5CSigma-%5Cleft%28%5Chat%7BA%7D+%5Chat%7BA%7D%5E%7B%5Cprime%7D%2B%5Chat%7BD%7D%5Cright%29%3D%5Cleft%28%5Cepsilon_%7Bi+j%7D%5Cright%29_%7Bp+%5Ctimes+p%7D%5C%5C

残差阵元素的平方和为残差平方和

equation?tex=Q%28m%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bp%7D+%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Cepsilon_%7Bi+j%7D%5E%7B2%7D%5C%5C

可以证明(课后习题8-4)

equation?tex=Q%28m%29%3D%5Csum_%7Bi%3D1%7D%5E%7Bp%7D+%5Csum_%7Bj%3D1%7D%5E%7Bp%7D+%5Cvarepsilon_%7Bi+j%7D%5E%7B2%7D%3D%5Csum_%7Bj%3Dm%2B1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D%5E%7B2%7D-%5Csum_%7Bi%3D1%7D%5E%7Bp%7D%5Cleft%28%5Csigma_%7Bi%7D%5E%7B2%7D%5Cright%29%5E%7B2%7D+%5Cleq+%5Csum_%7Bj%3Dm%2B1%7D%5E%7Bp%7D+%5Clambda_%7Bj%7D%5E%7B2%7D%5C%5C

(二)主因子解

可以看做主成分法的修正(就是迭代思想!)。

假如特殊因子方差的初始估计已知,那么令

equation?tex=R-D%3DA+A%5E%7B%5Cprime%7D%3D%3A+R%5E%7B%2A%7D%7B%5Cscriptsize+%7D+%5C%5C

通过求出

equation?tex=+R%5E%7B%2A%7D 的前 m 个特征根,得到 A 的估计,进而得到 D 的估计。反复迭代直到迭代前后 D 的差别很小就停止。

如果初始估计未知,那么一开始我们就用主成分法得到 A 的估计,进而得到 D 的初始估计。

公因子方差初始估计方法:第 i 个公因子方差取为第 i 个变量与其它所有变量的多重相关系数的平方

第 i 个公因子方差取为第 i 个变量与其它所有变量的相关系数绝对值中最大者

直接取为 1,等价于主成分解(将特殊因子方差忽略).

(三)极大似然估计

假设数据 X1,...,Xn 服从 p 元正态,公因子与特殊因子也假定服从正态。

equation?tex=L%28%5Cmu%2C+A%2C+D%29%3D%5Cprod_%7Bi%3D1%7D%5E%7Bd%7D+%5Cfrac%7B1%7D%7B%282+%5Cpi%29%5E%7Bp+%2F+2%7D%7C%5CSigma%7C%5E%7B1+%2F+2%7D%7D+%5Cexp+%5Cleft%5B-%5Cfrac%7B1%7D%7B2%7D%5Cleft%28%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bi%7D%7D-%5Cmu%5Cright%29%5E%7B%5Cprime%7D+%5Cboldsymbol%7B%5CSigma%7D%5E%7B-%5Cmathbf%7B1%7D%7D%5Cleft%28%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bi%7D%7D-%5Cmu%5Cright%29%5Cright%5D%5C%5C

对于均值和协方差阵可以用其极大似然估计替代,利用求极值的方法可得以下方程组

equation?tex=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+%5Cwidehat%7B%5Cmu%7D%3D%5Cbar%7BX%7D+%5C%5C+S+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%3D%5Cwidehat%7BA%7D%5Cleft%28I%2B%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%5Cright%29+%5C%5C+%5Cwidehat%7BD%7D%3D%5Coperatorname%7Bdiag%7D%5Cleft%28S-%5Cwidehat%7BA%7D+%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D%5Cright%29+%5Cend%7Barray%7D%5Cright.%5C%5C

其中第二个方程如下得到

equation?tex=%5C%5B%5Cbegin%7Barray%7D%7Bl%7D+S+%3D+%5Chat+A%5Chat+A%27+%2B+D%5C%5C++%5CRightarrow+S%7BD%5E%7B+-+1%7D%7D%5Chat+A+%3D+%5Cleft%28+%7B%5Chat+A%5Chat+A%27+%2B+D%7D+%5Cright%29%7BD%5E%7B+-+1%7D%7D%5Chat+A+%3D+%5Chat+A%5Cleft%28+%7BI+%2B+%5Chat+A%27%7BD%5E%7B+-+1%7D%7D%5Chat+A%7D+%5Cright%29+%5Cend%7Barray%7D%5C%5C%5C%5D

上面方程不能给出 A 和 D 唯一的估计,会加一个唯一性条件

equation?tex=%5Cwidehat%7BA%7D%5E%7B%5Cprime%7D+%5Cwidehat%7BD%7D%5E%7B-1%7D+%5Cwidehat%7BA%7D%3D%5CLambda%5C%5C

其中

equation?tex=%5CLambda 是对角阵。

实际计算中也是用迭代的思想,给定初值 D 然后利用第二个方程求 A,再用第三个方程求 D,直到稳定。

8.4 方差最大的正交旋转

(一)为什么考虑因子旋转

建立因子模型不仅要得到公共因子,还要能解释这些公共因子的具体含义。

因子载荷矩阵每一行的元素都不大(因为平方和小于1限制),但一般比较平衡,难以解释。现在希望旋转过后的载荷矩阵每一行元素差异大一些。

这篇关于用极大似然法估计因子载荷矩阵_多元统计分析第13讲(因子分析:载荷矩阵的估计,因子旋转;典型相关分析基本思想)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/232075

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Java Instrumentation从概念到基本用法详解

《JavaInstrumentation从概念到基本用法详解》JavaInstrumentation是java.lang.instrument包提供的API,允许开发者在类被JVM加载时对其进行修改... 目录一、什么是 Java Instrumentation主要用途二、核心概念1. Java Agent

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Kotlin 协程之Channel的概念和基本使用详解

《Kotlin协程之Channel的概念和基本使用详解》文章介绍协程在复杂场景中使用Channel进行数据传递与控制,涵盖创建参数、缓冲策略、操作方式及异常处理,适用于持续数据流、多协程协作等,需注... 目录前言launch / async 适合的场景Channel 的概念和基本使用概念Channel 的