使用卡尔曼滤波估计自由落体时的位置和速度

2023-10-18 09:59

本文主要是介绍使用卡尔曼滤波估计自由落体时的位置和速度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题:通过传感器可以测量出自由落体时的加速度、速度和位置,通过卡尔曼滤波估计速度和位置。

坐标系:向下为正,初始位置和速度都为0

先上卡尔曼滤波公式:

然后上代码:

# -*- coding: utf-8 -*
# 向下为正方向import numpy as np
import matplotlib.pyplot as pltdef main():# 时间共1s,采样周期10msdt = 0.01t = [i * dt for i in range(0, 100)]g = 9.8# 真实值x_true_mat = np.mat(0.5 * g * np.multiply(np.array(t), np.array(t)))v_true_mat = g * np.mat(t)u_true_mat = np.mat([g for i in range(0, 100)])# 噪声x_noise = np.round(np.random.normal(0, 0.1, 100), 2)v_noise = np.round(np.random.normal(0, 0.1, 100), 2)u_noise = np.round(np.random.normal(0, 0.01, 100), 2)x_noise_mat = np.mat(x_noise)v_noise_mat = np.mat(v_noise)u_noise_mat = np.mat(u_noise)# 测量值x_z_mat = x_true_mat + x_noise_matv_z_mat = v_true_mat + v_noise_matu_mat = u_true_mat + u_noise_mat# 定义x的初始状态x_mat = np.mat([[0], [0]])# 定义初始状态协方差矩阵p_mat = np.mat([[1, 0], [0, 1]])# 状态转移矩阵f_mat = np.mat([[1, dt], [0, 1]])# 控制矩阵b_mat = np.mat([[0.5 * dt * dt], [dt]])# 定义状态转移协方差矩阵,这里我们把协方差设置的很小,因为觉得状态转移矩阵准确度高q_mat = np.mat([[1.0 * 1.0 * dt * dt, 0], [0, 1.0 * 1.0 * dt * dt]])# 定义观测矩阵h_mat = np.mat([[1, 0], [0, 1]])# 定义观测噪声协方差r_mat = np.mat([[1.0 * 1.0, 0], [0, 2.5 * 2.5]])for i in range(100):x_predict = f_mat * x_mat + b_mat * u_mat[0, i]p_predict = f_mat * p_mat * f_mat.T + q_matk = p_predict * h_mat.T * (h_mat * p_predict * h_mat.T + r_mat).Izt = np.mat([[x_z_mat[0, i]], [v_z_mat[0, i]]])x_mat = x_predict + k * (zt - h_mat * x_predict)p_mat = (p_mat - k * h_mat) * p_predictplt.plot(t[i], x_z_mat[0, i], 'ro', markersize=1)plt.plot(t[i], v_z_mat[0, i], 'ro', markersize=1)plt.plot(t[i], x_mat[0, 0], 'bo', markersize=1)plt.plot(t[i], x_mat[1, 0], 'bo', markersize=1)plt.show()if __name__ == '__main__':main()

结果如下:

图中的红色点分别是观测的位置和速度,蓝色点为估计出的位置和速度。

这篇关于使用卡尔曼滤波估计自由落体时的位置和速度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231836

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows