使用卡尔曼滤波估计自由落体时的位置和速度

2023-10-18 09:59

本文主要是介绍使用卡尔曼滤波估计自由落体时的位置和速度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题:通过传感器可以测量出自由落体时的加速度、速度和位置,通过卡尔曼滤波估计速度和位置。

坐标系:向下为正,初始位置和速度都为0

先上卡尔曼滤波公式:

然后上代码:

# -*- coding: utf-8 -*
# 向下为正方向import numpy as np
import matplotlib.pyplot as pltdef main():# 时间共1s,采样周期10msdt = 0.01t = [i * dt for i in range(0, 100)]g = 9.8# 真实值x_true_mat = np.mat(0.5 * g * np.multiply(np.array(t), np.array(t)))v_true_mat = g * np.mat(t)u_true_mat = np.mat([g for i in range(0, 100)])# 噪声x_noise = np.round(np.random.normal(0, 0.1, 100), 2)v_noise = np.round(np.random.normal(0, 0.1, 100), 2)u_noise = np.round(np.random.normal(0, 0.01, 100), 2)x_noise_mat = np.mat(x_noise)v_noise_mat = np.mat(v_noise)u_noise_mat = np.mat(u_noise)# 测量值x_z_mat = x_true_mat + x_noise_matv_z_mat = v_true_mat + v_noise_matu_mat = u_true_mat + u_noise_mat# 定义x的初始状态x_mat = np.mat([[0], [0]])# 定义初始状态协方差矩阵p_mat = np.mat([[1, 0], [0, 1]])# 状态转移矩阵f_mat = np.mat([[1, dt], [0, 1]])# 控制矩阵b_mat = np.mat([[0.5 * dt * dt], [dt]])# 定义状态转移协方差矩阵,这里我们把协方差设置的很小,因为觉得状态转移矩阵准确度高q_mat = np.mat([[1.0 * 1.0 * dt * dt, 0], [0, 1.0 * 1.0 * dt * dt]])# 定义观测矩阵h_mat = np.mat([[1, 0], [0, 1]])# 定义观测噪声协方差r_mat = np.mat([[1.0 * 1.0, 0], [0, 2.5 * 2.5]])for i in range(100):x_predict = f_mat * x_mat + b_mat * u_mat[0, i]p_predict = f_mat * p_mat * f_mat.T + q_matk = p_predict * h_mat.T * (h_mat * p_predict * h_mat.T + r_mat).Izt = np.mat([[x_z_mat[0, i]], [v_z_mat[0, i]]])x_mat = x_predict + k * (zt - h_mat * x_predict)p_mat = (p_mat - k * h_mat) * p_predictplt.plot(t[i], x_z_mat[0, i], 'ro', markersize=1)plt.plot(t[i], v_z_mat[0, i], 'ro', markersize=1)plt.plot(t[i], x_mat[0, 0], 'bo', markersize=1)plt.plot(t[i], x_mat[1, 0], 'bo', markersize=1)plt.show()if __name__ == '__main__':main()

结果如下:

图中的红色点分别是观测的位置和速度,蓝色点为估计出的位置和速度。

这篇关于使用卡尔曼滤波估计自由落体时的位置和速度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231836

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(