利用图神经网络(GNN)的视频/图像分割模型总结(AGNN、Episodic Graph Memory Networks、Cas-GNN)

本文主要是介绍利用图神经网络(GNN)的视频/图像分割模型总结(AGNN、Episodic Graph Memory Networks、Cas-GNN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:Zero-shot VOS即为零样本视频对象分割,指在验证阶段不会向网络输入除待测视频本身以外的其他注释样本,下文记为 Z-VOS;One-shot VOS即为单样本视频对象分割,也可称为自监督或半监督视频对象分割(semi-supervised VOS),指在验证阶段向网络输入辅助分割的注释样本(通常是待测视频第一帧的真实分割结果掩模),下文记为 O-VOS;Semantic Object Segmentation即为语义对象分割,下文记为SOS。

Ⅰ、AGNN(Z-VOS)

Attentive Graph Neural Networks

Wang W, Lu X, Shen J, et al. Zero-shot video object segmentation via attentive graph neural networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 9236-9245.
AGNN模型示意图(训练时)

有loop-edge、intra-attention
v:结点,h:状态,g:门,m:消息

部分计算公式:
在这里插入图片描述

Ⅱ、Episodic Graph Memory Networks(O-VOS/Z-VOS)

Lu X, Wang W, Danelljan M, et al. Video object segmentation with episodic graph memory networks[C]//European Conference on Computer Vision. Springer, Cham, 2020: 661-679.
模型示意图

无loop-edge,
m:结点/消息,h:情景特征(状态),a:门
q:当前帧(自监督时)

部分计算公式:
在这里插入图片描述
论文里出现了一个词组,叫做 the label shuffling strategy(标签洗牌策略),它鼓励分割网络学习通过考虑当前的训练样本,而不是记忆目标和给定标签之间的特定关系,来区分当前框架中的特定实例

Ⅲ、Cas-GNN(SOS)

Cascade Graph Neural Networks

Luo A, Li X, Yang F, et al. Cascade graph neural networks for rgb-d salient object detection[C]//European Conference on Computer Vision. Springer, Cham, 2020: 346-364.
级联推理模型示意图

Node:多尺度颜色特征ci和深度特征di
Edge:1) ci或di之间,2) 相同尺度的ci和di之间
CNN:VNN-16,and use the dilated network technique(扩张网络技术) to ensure that the last two groups of VGG-16 have the same resolution
提取特征C和D后,用基于图的推理模型 Graph-based Reasoning (GR) module 推理跨模态的高阶关系,得到更强大的embeddings:

在这里插入图片描述
(比前两个多的一部分)
Hierarchical分层的GNN模型:由于它独立处理多层次推理过程,很难充分做到互利

Cascade Graph Reasoning (CGR) module 级联图推理模型:

在这里插入图片描述
在这里插入图片描述

总结:

1、相同点:

流程(框架)基本相同:CNN提取特征(RGB/RGB+某一帧/RGB+D),用(视频片段的某几帧的特征/图片提取多尺度特征)表示成几个结点,(RGB自连+互连/RGB互连/RGB+D互连)形成图,迭代进行消息传递,最后的结点特征(状态)再读出成所要的S(预测)

2、不同点:

Ⅰ像是标配版
Ⅱ在Ⅰ的基础上加了自监督(O-VOS)(如果是Z-VOS感觉和Ⅰ差不多吧)
Ⅲ在Ⅰ的基础上加了级联图推理CGR

这篇关于利用图神经网络(GNN)的视频/图像分割模型总结(AGNN、Episodic Graph Memory Networks、Cas-GNN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230173

相关文章

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优