利用图神经网络(GNN)的视频/图像分割模型总结(AGNN、Episodic Graph Memory Networks、Cas-GNN)

本文主要是介绍利用图神经网络(GNN)的视频/图像分割模型总结(AGNN、Episodic Graph Memory Networks、Cas-GNN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:Zero-shot VOS即为零样本视频对象分割,指在验证阶段不会向网络输入除待测视频本身以外的其他注释样本,下文记为 Z-VOS;One-shot VOS即为单样本视频对象分割,也可称为自监督或半监督视频对象分割(semi-supervised VOS),指在验证阶段向网络输入辅助分割的注释样本(通常是待测视频第一帧的真实分割结果掩模),下文记为 O-VOS;Semantic Object Segmentation即为语义对象分割,下文记为SOS。

Ⅰ、AGNN(Z-VOS)

Attentive Graph Neural Networks

Wang W, Lu X, Shen J, et al. Zero-shot video object segmentation via attentive graph neural networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 9236-9245.
AGNN模型示意图(训练时)

有loop-edge、intra-attention
v:结点,h:状态,g:门,m:消息

部分计算公式:
在这里插入图片描述

Ⅱ、Episodic Graph Memory Networks(O-VOS/Z-VOS)

Lu X, Wang W, Danelljan M, et al. Video object segmentation with episodic graph memory networks[C]//European Conference on Computer Vision. Springer, Cham, 2020: 661-679.
模型示意图

无loop-edge,
m:结点/消息,h:情景特征(状态),a:门
q:当前帧(自监督时)

部分计算公式:
在这里插入图片描述
论文里出现了一个词组,叫做 the label shuffling strategy(标签洗牌策略),它鼓励分割网络学习通过考虑当前的训练样本,而不是记忆目标和给定标签之间的特定关系,来区分当前框架中的特定实例

Ⅲ、Cas-GNN(SOS)

Cascade Graph Neural Networks

Luo A, Li X, Yang F, et al. Cascade graph neural networks for rgb-d salient object detection[C]//European Conference on Computer Vision. Springer, Cham, 2020: 346-364.
级联推理模型示意图

Node:多尺度颜色特征ci和深度特征di
Edge:1) ci或di之间,2) 相同尺度的ci和di之间
CNN:VNN-16,and use the dilated network technique(扩张网络技术) to ensure that the last two groups of VGG-16 have the same resolution
提取特征C和D后,用基于图的推理模型 Graph-based Reasoning (GR) module 推理跨模态的高阶关系,得到更强大的embeddings:

在这里插入图片描述
(比前两个多的一部分)
Hierarchical分层的GNN模型:由于它独立处理多层次推理过程,很难充分做到互利

Cascade Graph Reasoning (CGR) module 级联图推理模型:

在这里插入图片描述
在这里插入图片描述

总结:

1、相同点:

流程(框架)基本相同:CNN提取特征(RGB/RGB+某一帧/RGB+D),用(视频片段的某几帧的特征/图片提取多尺度特征)表示成几个结点,(RGB自连+互连/RGB互连/RGB+D互连)形成图,迭代进行消息传递,最后的结点特征(状态)再读出成所要的S(预测)

2、不同点:

Ⅰ像是标配版
Ⅱ在Ⅰ的基础上加了自监督(O-VOS)(如果是Z-VOS感觉和Ⅰ差不多吧)
Ⅲ在Ⅰ的基础上加了级联图推理CGR

这篇关于利用图神经网络(GNN)的视频/图像分割模型总结(AGNN、Episodic Graph Memory Networks、Cas-GNN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230173

相关文章

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用