【理论恒叨】【立体匹配系列】经典SGM:(2)匹配代价计算之Census变换

本文主要是介绍【理论恒叨】【立体匹配系列】经典SGM:(2)匹配代价计算之Census变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论恒叨系列

【理论恒叨】【立体匹配系列】经典SGM:(1)匹配代价计算之互信息(MI)
【理论恒叨】【立体匹配系列】经典SGM:(2)匹配代价计算之Census变换
【理论恒叨】【立体匹配系列】经典SGM:(3)代价聚合(Cost Aggregation)
【理论恒叨】【立体匹配系列】经典SGM:(4)视差计算、视差优化

【理论恒叨】【立体匹配系列】经典SGM:(2)匹配代价计算之Census变换

  上篇博客中,我们介绍了基于互信息的代价计算方法,由于基于互信息的匹配代价计算由于需要初始视差值,所以需要通过分层迭代的方式得到较为准确的匹配代价值,而且概率分布计算稍显复杂,这导致代价计算的效率并不高。学者Zabih和Woodfill 1 提出的基于Census变换法也被广泛用于匹配代价计算。Census变换是使用像素邻域内的局部灰度差异将像素灰度转换为比特串,思路非常简单,通过将邻域窗口(窗口大小为 n × m n×m n×m n n n m m m都为奇数)内的像素灰度值与窗口中心像素的灰度值进行比较,将比较得到的布尔值映射到一个比特串中,最后用比特串的值作为中心像素的Census变换值 C s C_s Cs,如公式1所示:

式1

其中, n ′ n' n m ′ m' m分别为不大于 n n n m m m的一半的最大整数, ⊕ ⊕ 为比特位的逐位连接运算, ξ ξ ξ运算则由公式2定义:

式2

基于Census变换的匹配代价计算方法是计算左右影像对应的两个像素的Census变换值的汉明(Hamming)距离,即

式3

  Hamming距离即两个比特串的对应位不相同的数量,计算方法为将两个比特串进行亦或运算,再统计亦或运算结果的比特位中不为1的个数。

  基于Census变换的匹配代价计算方法如图1所示,

图1 汉明距离示意图

  从图1可以看出,Census变换对整体的明暗变化并不敏感,因为是比较的相对灰度关系,所以即使左右影像亮度不一致,也能得到较好的匹配效果。

  Census相比互信息还具有并行度高的优点,因为Census变换值是局部窗口运算,所以每个像素可以独立运算,这个特性让其可以很好的设计多线程并行计算模型,无论是CPU并行还是GPU并行都能达到非常高的并行效率。

  在实际匹配过程中,简单的执行匹配代价计算并不能得到高质量的视差图,必须经过代价聚合步骤,聚合后的代价能够更准确地反应匹配相似度,下篇博客中,将为大家详解SGM的代价聚合步骤,查看请点击 >> link

附:
计算Census值及Hamming的代码:
Census值

uint8 gray_center= img_data[image_y *img_width + image_x];		// 中心像素值
// 遍历大小为2csh*2csw的窗口内邻域像素,逐一比较像素值与中心像素值的的大小,计算census值
uint32 census_value = 0u;
for (sint32 i = -csh; i <= csh; i++) {for (sint32 j = -csw; j <= csw; j++) {census_value <<= 1;uint8 gray = img_data[(image_y + i)*img_width + image_x + j];if (gray < gray_center) {census_value += 1;}}
}
census[image_y *img_width + image_x] = census_value;		// 中心像素的census值

Hamming距离

// unsigned to 32bit
//计算hamming距离
uint32 hamDist32(const uint32& x, const uint32& y)
{uint32 dist = 0, val = x ^ y;// Count the number of set bitswhile (val){++dist;val &= val - 1;}return dist;
}
码上教学系列

【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(1)框架与类设计
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(2)代价计算
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(3)代价聚合
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(4)代价聚合2
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(5)视差优化
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(6)视差填充
【恒叨立码】【码上实战】【立体匹配系列】经典SGM:(7)弱纹理优化

完整代码已发布于Github开源项目:Github/SemiGlobalMatching,欢迎免费下载

博主简介:
Ethan Li 李迎松
武汉大学 摄影测量与遥感专业博士

主方向立体匹配、三维重建

2019年获测绘科技进步一等奖(省部级)

爱三维,爱分享,爱开源
GitHub: https://github.com/ethan-li-coding
邮箱:ethan.li.whu@gmail.com

个人微信:

欢迎交流!

喜欢博主的文章不妨关注一下博主的博客,感谢!
博客主页:https://blog.csdn.net/rs_lys


  1. ZABIH R, WOODFILL J. Non-parametric local transforms for computing visual correspondence[M]. 1994: 151-158. ↩︎

这篇关于【理论恒叨】【立体匹配系列】经典SGM:(2)匹配代价计算之Census变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/228849

相关文章

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

Nginx路由匹配规则及优先级详解

《Nginx路由匹配规则及优先级详解》Nginx作为一个高性能的Web服务器和反向代理服务器,广泛用于负载均衡、请求转发等场景,在配置Nginx时,路由匹配规则是非常重要的概念,本文将详细介绍Ngin... 目录引言一、 Nginx的路由匹配规则概述二、 Nginx的路由匹配规则类型2.1 精确匹配(=)2

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti