最小生成树小结(MST问题) Kruskal 算法 Prim算法 POJ 1258 HDOJ 1233

2023-10-17 09:32

本文主要是介绍最小生成树小结(MST问题) Kruskal 算法 Prim算法 POJ 1258 HDOJ 1233,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • Kruskal 算法
      • Prim算法
      • 总结

Kruskal 算法

算法步骤:
1、初始化时所有结点属于孤立的集合

2、按照边权递增顺序 遍历所有的边,若遍历到的边连接的两个顶点分属于不同的集合(该边即为连通这两个集合的边中权值最小的那条),则确定该边为最小生成树上的一条边,并将这两个顶点分属的集合合并。

3、遍历完所有的边后,若是原图上所有结点属于同一个集合,则被选取的边和原图中的所有结点构成最小生成树;否则原图不连通,最小生成树不存在。

如步骤所示,在用Kruskal算法求解最小生成树问题时涉及到大量的集合操作,我们可以使用并查集来实现这些操作。

记忆要点:按照边权递增顺序排序 、并查集判断是否属于同一个集合

模板代码:

int tree[maxn];
void init(int x) {//并查集初始化for (int i = 1; i <= x; i++) { tree[i] = -1; }
}
int findroot(int a) {//寻找根结点if (tree[a] == -1) return a;else {int tmp = findroot(tree[a]);tree[a] = tmp;//路径压缩return tmp;}
}
struct Edge {//存放边结构int from, to, cost;
}edge[maxm];
bool cmp(Edge a, Edge b) {//按照边权递增顺序排序return a.cost < b.cost;
}
int main() {...sort(edge + 1, edge + 1 + cnt, cmp);int ans = 0;for (int i = 1; i <= cnt; i++) {int u = findroot(edge[i].from);int v = findroot(edge[i].to);if (u != v) {tree[u] = v;//合并ans += edge[i].cost;}}cout << ans << endl;}
}

下面给出的例题都不存在得不到最小生成树的情况,所以最后我们并没有对所有结点是否属于同一个集合进行判断,若可能出现不存在最小生成树的情况,则该步不能省略。

POJ 1258 Agri-Net 题目链接 最小生成树入门题目

Sample Input
4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0
Sample Output
28
题目大意:
给你N*N矩阵,表示N个村庄之间的距离。现在要把N个村庄全都连接起来,求连接的最短距离。

AC代码:

#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
#define maxn 101
#define INF 0x3fffffff
int tree[maxn];
void init(int x) {for (int i = 1; i <= x; i++) { tree[i] = -1; }
}
int findroot(int a) {if (tree[a] == -1) return a;else {int tmp = findroot(tree[a]);tree[a] = tmp;//路径压缩return tmp;}
}
struct Edge {int from, to, cost;
}edge[5000];
bool cmp(Edge a, Edge b) {return a.cost < b.cost;
}
int main() {int n;while (cin >> n) {init(n);int w, cnt = 0;//cnt代表边的条数for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {cin >> w;if (j > i) {edge[++cnt].from = i;edge[cnt].to = j;edge[cnt].cost = w;}}}sort(edge + 1, edge + 1 + cnt, cmp);int ans = 0;for (int i = 1; i <= cnt; i++) {int u = findroot(edge[i].from);int v = findroot(edge[i].to);if (u != v) {tree[u] = v;//合并ans += edge[i].cost;}}cout << ans << endl;}
}

HDOJ 1233 还是通畅工程 题目链接

Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
Sample Output
3
5

题目大意:
在给定的道路中选取一些,使所有的城市直接或间接连通且使道路的总长度
最小,该例即为典型的最小生成树问题。我们将城市抽象成图上的结点,将道路
抽象成连接点的边,其长度即为边的权值。经过这样的抽象,我们求得该图的最
小生成树,其上所有的边权和即为所求。

AC代码:

#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
#define N 101
int Tree[N];int findRoot(int a) {if (Tree[a] == -1) {return a;}else {int tmp = findRoot(Tree[a]);Tree[a] = tmp;//路径压缩return tmp;}
}
struct Edge {int a, b;int cost;
};
Edge edge[5000];
bool cmp(Edge a, Edge b) {return a.cost < b.cost;
}int main() {int n;while (scanf("%d",&n)!=EOF) {if (n == 0) { break; }int a, b, mycost;for (int i = 1; i <= n; i++) {Tree[i] = -1;}int time = n*(n - 1) / 2;for (int i = 1; i <= time; i++) {scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].cost);}sort(edge + 1, edge + 1 + time, cmp);int ans = 0;for (int i = 1; i <= time; i++) {int a = findRoot(edge[i].a);int b = findRoot(edge[i].b);if (a != b) {//两树合并Tree[a] = b;ans += edge[i].cost;}}printf("%d\n", ans);}
}

Prim算法

与Dijkstra算法十分相似,以图上的某一顶点为出发点,逐次选择到最小生成树顶点集距离最短的顶点为最小生成树的顶点,并加入到该顶点集,直到包含所有的顶点。

步骤:

1.选择一出发点,加入集合A。

2.遍历与集合A中的点相邻的边,在不构成回路的情况下找到最短的边。

3.将步骤2得到的边的目标点加入集合A。

4.重复2,3直到所有结点都加入到集合A中,如果算法结束后还有结点不在集合A中,则不存在最小生成树。

核心代码:

int map[maxn][maxn];
int d[maxn];//用于存放连通某一顶点所需要的代价
bool mark[maxn];
int n;//顶点个数
int prim(int s) {for (int i = 1; i <= n; i++) {d[i] = INF;mark[i] = false;}int newnode = s;mark[newnode] = true;d[newnode] = 0;int ans = 0;//返回值for (int i = 1; i < n; i++) {//循环n-1次for (int j = 1; j <= n; j++) {if (mark[j] || map[newnode][j] == INF) continue;if (d[j] == INF || d[j] > map[newnode][j]) {d[j] = map[newnode][j];}}int tmp = INF;for (int j = 1; j <= n; j++) {//寻找最小值加入集合if (mark[j] || d[j] == INF) continue;if (d[j] < tmp) {tmp = d[j];newnode = j;}}if (tmp == INF) return -1;//不存在最小生成树 提前剪枝mark[newnode] = true;ans += d[newnode];}return ans;
}

POJ 1258 Agri-Net AC代码:

#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
#define INF 0x3fffffff
#define maxn 101
int map[maxn][maxn];
int d[maxn];//用于存放连通某一顶点所需要的代价
bool mark[maxn];
int n;//顶点个数
int prim(int s) {for (int i = 1; i <= n; i++) {d[i] = INF;mark[i] = false;}int newnode = s;mark[newnode] = true;d[newnode] = 0;//将一号结点作为选择的第一个结点int ans = 0;//返回值for (int i = 1; i < n; i++) {//循环n-1次for (int j = 1; j <= n; j++) {if (mark[j] || map[newnode][j] == INF) continue;if (d[j] == INF || d[j] > map[newnode][j]) {d[j] = map[newnode][j];}}int tmp = INF;for (int j = 1; j <= n; j++) {//寻找最小值加入集合if (mark[j] || d[j] == INF) continue;if (d[j] < tmp) {tmp = d[j];newnode = j;}}if (tmp == INF) return -1;//不存在最小生成树 提前剪枝mark[newnode] = true;ans += d[newnode];}return ans;
}int main() {while (scanf("%d", &n) != EOF) {for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {scanf("%d", &map[i][j]);}}cout << prim(n) << endl;}return 0;
}

HDOJ 1233 还是通畅工程 AC代码:

#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
#define INF 0x3fffffff
#define maxn 101
int map[maxn][maxn];
int d[maxn];//用于存放连通某一顶点所需要的代价
bool mark[maxn];
int n;//顶点个数
void init(int x) {for (int i = 1; i <= x; i++) {for (int j = 1; j <= x; j++) {map[i][j] = INF;}}
}
int prim(int s) {for (int i = 1; i <= n; i++) {d[i] = INF;mark[i] = false;}int newnode = s;mark[newnode] = true;d[newnode] = 0;//将一号结点作为选择的第一个结点int ans = 0;//返回值for (int i = 1; i < n; i++) {//循环n-1次for (int j = 1; j <= n; j++) {if (mark[j] || map[newnode][j] == INF) continue;if (d[j] == INF || d[j] > map[newnode][j]) {d[j] = map[newnode][j];}}int tmp = INF;for (int j = 1; j <= n; j++) {//寻找最小值加入集合if (mark[j] || d[j] == INF) continue;if (d[j] < tmp) {tmp = d[j];newnode = j;}}if (tmp == INF) return -1;//不存在最小生成树 提前剪枝mark[newnode] = true;ans += d[newnode];}return ans;
}int main() {while (scanf("%d", &n) != EOF) {if (n == 0)break;init(n);int time = n*(n - 1) / 2;int u, v, w;for (int i = 1; i <= time; i++) {scanf("%d%d%d", &u, &v, &w);map[u][v] = min(map[u][v], w);map[v][u] = map[u][v];}cout << prim(n) << endl;}return 0;
}

总结

Kruskal的算法复杂度为O(eloge),与网中的边数有关,适合于稀疏图;而Prim算法的时间复杂度为O(n^2),与网中的边数无关,适合于稠密图。

这篇关于最小生成树小结(MST问题) Kruskal 算法 Prim算法 POJ 1258 HDOJ 1233的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/224491

相关文章

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co