【PCL】ICP(Iterative Closest Point)原理剖析——仿射变换(Affine Transformation)数学模型

本文主要是介绍【PCL】ICP(Iterative Closest Point)原理剖析——仿射变换(Affine Transformation)数学模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录&索引

  • 1 几何变换
  • 2 仿射变换
    • 2.1 平移
    • 2.2 缩放
    • 2.3 剪切
    • 2.4 旋转
    • 2.5 组合
  • 3 结论


包含相同内容的两幅图像可能由于成像角度、透视关系乃至镜头自身原因所造成的几何失真而呈现出截然不同的外观,这就给观测者或是图像识别程序带来了困扰。通过适当的几何变换可以最大程度地消除这些几何失真所产生的负面影响,有利于我们在后续的处理和识别工作中将注意力集中子图像内容本身,更确切地说是图像中的对象,而不是该对象的角度和位置等。因此,几何变换常常作为其他图像处理应用的预处理步骤, 是图像归一化的核心工作之一。

1 几何变换

变换模型是指根据待匹配图像与背景图像之间几何畸变的情况,所选择的能最佳拟合两幅图像之间变化的几何变换模型。可采用的变换模型有如下几种:刚性变换、仿射变换、透视(投影)变换和非线性变换等,如下图:

c 和 d 的区别可以看下图:

其中仿射变换就是我们本文要讨论的,而仿射变换中的平移、旋转则是刚性 ICP 的重点,本文将以二维仿射变换为例,阐述仿射变化的数学模型。


2 仿射变换

仿射变换(Affine Transformation)

Affine Transformation 是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注:straightness,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,相交直线的交角不变)。

仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和剪切(Shear)

仿射变换(二维)可以用下面公式表示:

参考:图像变换的基本模型

矩阵乘法的规则如下所示:
在这里插入图片描述
具体到二维的仿射变换的计算如下:

2.1 平移

将每一点移动到 (x+tx, y+ty),变换矩阵为:
在这里插入图片描述
平移变换是一种“刚体变换”,rigid-body transformation,就是不会产生形变的理想物体。

效果:
在这里插入图片描述

2.2 缩放

将每一点的横坐标放大(缩小)至 sx 倍,纵坐标放大(缩小)至 sy 倍,变换矩阵为:
在这里插入图片描述
变换效果如下:
在这里插入图片描述

2.3 剪切

变换矩阵为:
在这里插入图片描述
相当于一个横向剪切与一个纵向剪切的复合:
在这里插入图片描述
效果:
在这里插入图片描述

2.4 旋转

目标图形围绕原点顺时针旋转 theta 弧度,变换矩阵为:
在这里插入图片描述
效果:
在这里插入图片描述

2.5 组合

旋转变换,目标图形以 (x, y) 为轴心顺时针旋转 theta 弧度,变换矩阵为:
在这里插入图片描述
相当于两次平移变换与一次原点旋转变换的复合:
在这里插入图片描述
先移动到中心节点,然后旋转,然后再移动回去。

这个转换矩阵也可以下面这样描述:


3 结论

常用转换矩阵如下:


这篇关于【PCL】ICP(Iterative Closest Point)原理剖析——仿射变换(Affine Transformation)数学模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/222011

相关文章

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实