Elasticsearch实现检索词自动补全(检索词补全,自动纠错,拼音补全,繁简转换) 包含demo

本文主要是介绍Elasticsearch实现检索词自动补全(检索词补全,自动纠错,拼音补全,繁简转换) 包含demo,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Elasticsearch实现检索词自动补全

  • 自动补全
    • 定义映射字段
    • 建立索引
    • 测试自动补全
  • 自动纠错
    • 查询语句
    • 查询结果
  • 拼音补全与繁简转换
    • 安装 elasticsearch-analysis-pinyin 插件
    • 定义索引与映射
    • 建立拼音自动补全索引
    • 测试拼音自动补全
    • 测试繁简转换自动补全
  • 代码实现
    • demo结构
    • demo获取
  • 自动补全-官方文档
    • 映射(Mapping)
    • 索引(Indexing)
    • 查询(Querying)
    • 跳过重复建议
    • 模糊查询(自动纠错)
    • 正则表达式查询

自动补全

定义映射字段

下面的请求定义了一个名为 “book” 的 Elasticsearch 索引,其中包含一个 具有 “text” 数据类型和 “standard” 分析器且名为 “title” 的字段。此字段用于处理书籍标题的文本数据。定义了名为 “suggest” 的 “completion” 子字段,用于支持实时搜索建议的自动补全功能。

PUT /book
{"mappings": {"properties": {"title": {"type": "text","analyzer": "standard","fields": {"suggest": {"type": "completion"}}}}}
}

建立索引

在这里插入图片描述
增加测试数据

PUT /book/_doc/1
{"title":"散文精选"
}PUT /book/_doc/2
{"title":"三国演义"
}PUT /book/_doc/3
{"title":"三体二:黑暗森林"
}

测试自动补全

POST /book/_search
{"suggest": {"book-suggest": {"prefix": "三","completion": {"field": "title.suggest","size": 5}}}
}

查询结果如下:
在这里插入图片描述

自动纠错

查询语句

使用 “fuzzy” 参数来实现模糊匹配,即允许在查询中包含一定数量的拼写错误。可以根据需要调整 “fuzziness” 的值,以容忍更多或更少的拼写错误

POST /book/_search
{"suggest": {"book-suggest": {"prefix": "三国眼","completion": {"field": "title.suggest","size": 5,"fuzzy": {"fuzziness": 2}}}}
}

查询结果

在这里插入图片描述

拼音补全与繁简转换

拼音分词器(pinyin analyzer)通常需要自行引入,因为它不是 Elasticsearch 的默认分词器。可以使用 Elasticsearch 的插件来引入 pinyin 分词器,以便在索引中使用它。

安装 elasticsearch-analysis-pinyin 插件

选择与自己版本一致的版本,插件地址:
https://github.com/medcl/elasticsearch-analysis-pinyin/releases

在这里插入图片描述
elasticsearch-analysis-pinyin分词器目前没有下载即可使用的安装包,需要自己下载源码进行编译。可以在项目目录elasticsearch-analysis-pinyin\target\releases看到编译后的结果elasticsearch-analysis-pinyin-7.17.11.zip

在这里插入图片描述

然后在es的安装目录下plugins目录下新建pinyin目录,并将解压后的文件复制到该目录下
在这里插入图片描述
重启es,启动日志中已经加载了拼音插件
在这里插入图片描述

定义索引与映射

PUT /book_pinyin
{"settings": {"index": {"analysis": {"analyzer": {"pinyin_analyzer": {"tokenizer": "my_pinyin"}},"tokenizer": {"my_pinyin": {"type": "pinyin","keep_separate_first_letter": false,"keep_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"lowercase": true,"remove_duplicated_term": true}}}}},"mappings": {"properties": {"title": {"type": "text","analyzer": "standard","fields": {"suggest": {"type": "completion","analyzer": "pinyin_analyzer"}}}}}
}

建立拼音自动补全索引

在这里插入图片描述

测试拼音自动补全

  • 增加测试数据
    PUT /book_pinyin/_doc/1
    {"title":"散文精选"
    }PUT /book_pinyin/_doc/2
    {"title":"三国演义"
    }PUT /book_pinyin/_doc/3
    {"title":"三体二:黑暗森林"
    }PUT /book_pinyin/_doc/4
    {"title":"三國演義"
    }
  • 执行检索
POST /book_pinyin/_search
{"suggest": {"book-suggest": {"prefix": "san","completion": {"field": "title.suggest","size": 5,"fuzzy": {"fuzziness": 2}}}}
}

在这里插入图片描述

测试繁简转换自动补全

我们这里实现了拼音转换后已经实现了繁简转换
在这里插入图片描述

在这里插入图片描述

代码实现

demo结构

简单创建一个springboot项目,使用html实现了一个简单的demo
在这里插入图片描述

实现效果如下:
在这里插入图片描述

demo获取

自动补全-官方文档

Completion Suggester 是 Elasticsearch 提供的自动补全和搜索即时提示的功能。这是一种导航功能,可引导用户在键入时找到相关结果,从而提高搜索准确性。请注意,它不适用于拼写校正或类似 term 或 phrase suggesters 的“您是不是要这样说”功能。

理想情况下,自动补全功能应该与用户输入同步,以提供与用户已经键入的内容相关的即时反馈。因此,Completion Suggester 针对速度进行了优化。该建议器使用数据结构来实现快速查找,但构建和存储这些数据结构是昂贵的,并且存储在内存中

映射(Mapping)

要使用此功能,需要为字段指定一个特殊的映射,以便为快速补全建议索引字段值。

PUT music
{"mappings": {"properties": {"suggest": {"type": "completion"},"title": {"type": "keyword"}}}
}

映射支持以下参数:

  • analyzer:用于索引的分析器,默认为 simple。
  • search_analyzer:用于搜索的分析器,默认为与 “analyzer” 相同。
  • preserve_separators:保留分隔符,默认为 true。如果禁用,您可能会找到以 “Foo Fighters” 开头的字段,如果建议输入为 “foof”。
  • preserve_position_increments:启用位置增量,默认为 true。如果禁用并使用停用词分析器,建议输入 “b” 时,您可能会得到以 “The Beatles” 开头的字段。请注意:如果能够丰富数据,也可以通过索引两个输入 “Beatles” 和 “The Beatles” 来实现,无需更改简单分析器。
  • max_input_length:限制单个输入的长度,默认为 50 个 UTF-16 代码点。此限制仅在索引时使用,以减少每个输入字符串的字符总数,以防止底层数据结构膨胀。在大多数情况下,默认值不会对使用产生影响,因为前缀建议很少会增长到比一小撮字符长的前缀。

索引(Indexing)

索引建议与索引其他字段的数据相似。建议由输入和可选的权重属性组成。输入是建议查询中预期匹配的文本,而权重确定建议的评分。索引建议的示例如下:

PUT music/_doc/1?refresh
{"suggest" : {"input": [ "Nevermind", "Nirvana" ],"weight" : 34}
}

支持以下参数:

  • input:要存储的输入,可以是字符串数组或仅为字符串。此字段是必需的。该值不能包含以下 UTF-16 控制字符:\u0000(null)、\u001f(信息分隔符一)、\u001e(信息分隔符二)。
  • weight:正整数或包含正整数的字符串,用于定义权重,可用于排列建议。此字段是可选的。

您还可以使用以下简化形式,但请注意,在简化形式中不能为建议指定权重。

PUT music/_doc/1?refresh
{"suggest" : [ "Nevermind", "Nirvana" ]
}

查询(Querying)

建议查询与通常查询相似,不同之处在于您必须将建议类型指定为 “completion”。建议是近实时的,这意味着通过 “refresh” 可以立即显示新建议,已删除的文档永远不会被显示。

下面是一个查询的示例:

POST music/_search?pretty
{"suggest": {"song-suggest": {"prefix": "nir","completion": {"field": "suggest"}}}
}

在查询结果中,Elasticsearch 将返回与用户输入前缀匹配的建议。您可以使用这些建议为用户提供搜索建议。

自动补全建议还支持模糊查询和正则表达式查询,以处理用户输入中的拼写错误或其他变化。这些查询可以通过 "fuzzy""regex" 参数进行配置。

请注意,默认情况下,“_source” 元数据字段是启用的,以便返回建议的源数据。建议的权重通过 “_score” 返回。默认情况下,建议返回完整文档的 “_source”。如果 _source 大小会影响性能,可以使用源过滤来减小 _source 大小。

以上是使用 Completion Suggester 的基本概述。根据需求,您可以进一步配置和定制自动补全建议。 Completion Suggester 可以考虑索引中的所有文档。对于如何查询文档子集的详细信息,请查看上下文建议(Context Suggester)。

如果一个建议查询跨越多个分片,建议会在两个阶段执行,最后一个阶段从分片中获取相关文档,这意味着当建议跨多个分片时,在单个分片上执行建议请求会更有效,因为建议涵盖多个分片时需要执行文档提取开销。为了获得最佳的自动补全性能,建议将自动补全索引到单个分片索引中。如果由于分片大小而导致堆内存使用过高,仍建议将索引分成多个分片,而不是为了优化自动补全性能。

跳过重复建议

查询可能会返回来自不同文档的重复建议。通过将 "skip_duplicates" 设置为 true,可以修改此行为。设置为 true 时,此选项会减慢搜索,因为需要访问更多的建议以查找前 N 个。

模糊查询(自动纠错)

Completion Suggester 还支持模糊查询,这意味着您可以在搜索中出现拼写错误,仍然可以获得结果。

例如,以下是一个使用模糊查询的查询示例:

POST music/_search?pretty
{"suggest": {"song-suggest": {"prefix": "nor","completion": {"field": "suggest","fuzzy": {"fuzziness": 2}}}}
}

模糊查询会根据查询前缀与建议前缀的最长匹配来对建议进行评分。模糊查询支持各种参数,如 “fuzziness”、“transpositions”、“min_length”、“prefix_length” 和 “unicode_aware”,可以用于调整匹配的宽松程度和性能。

正则表达式查询

Completion Suggester 还支持正则表达式查询,这意味着您可以使用正则表达式来表示前缀。

例如,以下是一个使用正则表达式查询的示例:

POST music/_search?pretty
{"suggest": {"song-suggest": {"regex": "n[ever|i]r","completion": {"field": "suggest"}}}
}

正则表达式查询可以包含各种参数,如 “flags” 和 “max_determinized_states”,以用于调整匹配的方式和性能。

这篇关于Elasticsearch实现检索词自动补全(检索词补全,自动纠错,拼音补全,繁简转换) 包含demo的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/220436

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、