R实现动态条件相关模型与GARCH模型结合研究中美股市动态相关性(DCC-GARCH模型)

本文主要是介绍R实现动态条件相关模型与GARCH模型结合研究中美股市动态相关性(DCC-GARCH模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      大家好,我是带我去滑雪!

      中美两国是全球最大的经济体,其经济活动对全球产业链和贸易体系都具有巨大影响。中美之间的经济互动包括大规模的贸易、投资和金融往来。这些互动不仅仅反映在经济数据上,还体现在股市上。中美股市的联动关系反映了全球化时代的现实。它们的表现不仅关乎两国自身经济,还对全球经济和金融市场有着深远的影响。因此,了解和关注这种联动关系对投资者、政策制定者和全球市场观察者来说都至关重要。本期使用DCC-GARCH模型研究近20年中美股市的动态相关性。

目录

一、数据搜集与预处理

(1)收益率的描述统计

(2)ADF平稳性检验

(3)ARCH效应检验

(4)绘制指数与收益率的时序图

二、DCC-GARCH的估计

(1)估计结果

(2) 绘制DCC估计后的条件均值图、条件方差图、条件协方差图 、动态条件相关系数图


一、数据搜集与预处理

        目标是选用S&P综合指数(GSPC)的周对数收益率作为美国股市的市场收益率,选用上证综合指数(SSEC)的周对数收益率作为中国股市的市场收益率。数据样本区间为1997年7月到2017年7月,共计1048例收盘价,数据均来源于雅虎财经。由于获取的原始数据是指数的收盘价,因此可以先求得指数的收益率,并放大100倍。下面对收益率进行时间序列数据建模前的各自准备工作,包括收益率的描述统计、平稳性检验、ARCH效应检验,下面分别一一进行。

install.packages("fBasics",repos="http://mirrors.tuna.tsinghua.edu.cn/CRAN/")
install.packages("FinTS",repos="http://mirrors.tuna.tsinghua.edu.cn/CRAN/")
install.packages("rmgarch",repos="http://mirrors.tuna.tsinghua.edu.cn/CRAN/")
install.packages("MTS",repos="http://mirrors.tuna.tsinghua.edu.cn/CRAN/")
library(fBasics);library(FinTS);library(tseries)
library(rmgarch);library(MTS)

#安装并调用包

dat1.tmp <- read.csv("E:/GSPC.csv"); head(dat1.tmp)
dat2.tmp <- read.csv("E:/SSEC.csv"); head(dat2.tmp)

#导入数据

dat1=xts::as.xts(dat1.tmp[,2],as.Date(dat1.tmp[,1]))
dat2=xts::as.xts(dat2.tmp[,2],as.Date(dat2.tmp[,1]))
head(dat1);head(dat2)

#将导入的数据转换为时间序列格式

R1=diff(log(dat1))*100;R1=R1[-1]   #Compute Returns
names(R1)="GSPC";head(R1)

R2=diff(log(dat2))*100;R2=R2[-1]   #Compute Returns
names(R2)="SSEC" ;head(R2)

#求得指数的收益率,并放大100倍

输出结果:

                SSEC
1997-07-13  4.658029
1997-07-20 -3.276194
1997-07-27  1.858668
1997-08-03  1.102607
1997-08-10 -5.364068
1997-08-17  2.485685

                 GSPC
1997-07-13 -0.1506572
1997-07-20  2.5339921
1997-07-27  0.8855145
1997-08-03 -1.4463145
1997-08-10 -3.5689432
1997-08-17  2.4919732

(1)收益率的描述统计

DataRet=na.omit(cbind(R1,R2));#去除缺失值
tail(DataRet);nrow(DataRet)#展示最后6行,并计算收益率长度

输出结果:

                 GSPC      SSEC
2017-06-25 -0.61254923 1.0882729
2017-07-02  0.07301175 0.7965253
2017-07-09  1.39588457 0.1385001
2017-07-16  0.53814120 0.4818579
2017-07-23 -0.01779466 0.4701144
2017-07-30  0.19115167 0.2713932
[1] 1047
basicStats(DataRet)

输出结果:

                   GSPC        SSEC
nobs        1047.000000 1047.000000
NAs            0.000000    0.000000
Minimum      -20.083751  -14.897934
Maximum       11.355896   13.944743
1. Quartile   -1.137209   -1.738476
3. Quartile    1.404862    1.904221
Mean           0.094936    0.099183
Median         0.196563    0.050927
Sum           99.397639  103.844343
SE Mean        0.076118    0.103059
LCL Mean      -0.054426   -0.103043
UCL Mean       0.244297    0.301408
Variance       6.066269   11.120290
Stdev          2.462980    3.334710
Skewness      -0.775533   -0.128495
Kurtosis       6.394769    2.291610

(2)ADF平稳性检验

adf.test(R1);

输出结果:

    Augmented Dickey-Fuller Test

data:  R1
Dickey-Fuller = -9.8464, Lag order = 10, p-value = 0.01
alternative hypothesis: stationary

adf.test(R2);

输出结果:

    Augmented Dickey-Fuller Test

data:  R2
Dickey-Fuller = -8.1659, Lag order = 10, p-value = 0.01
alternative hypothesis: stationary

        由于 时间序列数据进行建模时,需要了解数据的平稳性,以保证模型的有效性。通过ADF检验可以发现中美股市收益率是平稳的。

(3)ARCH效应检验

ArchTest(R1,lags=15,demean=T)

输出结果:

    ARCH LM-test; Null hypothesis: no ARCH effects

data:  R1
Chi-squared = 158.22, df = 15, p-value < 2.2e-16

ArchTest(R2,lags=15,demean=T)

输出结果:

    ARCH LM-test; Null hypothesis: no ARCH effects

data:  R2
Chi-squared = 127.52, df = 15, p-value < 2.2e-16

       通过ARCH检验可以发现中美股市收益率之间存在ARCH效应,说明可以运用GARCH模型。

(4)绘制指数与收益率的时序图

opar=par(no.readonly=T)
par(mfrow=c(2,2))
plot(dat1,main="GSPC",xlab="Time",ylab="Index")
plot(dat2,main="SSEC",xlab="Time",ylab="Index")
plot(R1,main="GSPC",xlab="Time",ylab="log return")
plot(R2,main="SSEC",xlab="Time",ylab="log return")
par(opar)

输出结果:

       通过时序图可以发现,美国收益率指数虽然在互联网泡沫和次贷危机期间大幅度下降,但大部分时期指数是上涨的。而中国指数在2007年到2008年以及2015年到2016年两个时间段显著大涨大跌,其他时期的走势相对平稳,但上行行情远没有美国的多。通过收益率的时序图可以发现,中美两国收益率都存在显著的波动聚集现象,并且中国的波动幅度大于美国的波动。

二、DCC-GARCH的估计

(1)估计结果

n=ncol(DataRet)
p=1;q=1
meanSpec=list(armaOrder=c(1,0),include.mean=TRUE,archpow=1)
varSpec=list(model="sGARCH",garchOrder = c(p,q))
distSpec=c("mvt") #c("mvnorm", "mvt", "mvlaplace")

spec1=ugarchspec(mean.model=meanSpec,variance.model=varSpec)
mySpec=multispec(replicate(n, spec1))

mySpec=dccspec(mySpec, VAR=F, robust=F, lag=1, lag.max=NULL,lag.criterion=c("AIC"), external.regressors = NULL,    robust.control = list(gamma = 0.25, delta = 0.01, nc = 10, ns = 500),    dccOrder = c(1, 1),    distribution = distSpec, start.pars = list(), fixed.pars = list())
fit_dcc=dccfit(data=DataRet, mySpec, out.sample=10, solver="solnp", solver.control = list(), fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE), parallel = TRUE, parallel.control = list(pkg = c("multicore"), cores = 2), fit = NULL, VAR.fit = NULL)
RSD=residuals(fit_dcc);
show(fit_dcc)

输出结果:


*---------------------------------*
*          DCC GARCH Fit          *
*---------------------------------*

Distribution         :  mvt
Model                :  DCC(1,1)
No. Parameters       :  14
[VAR GARCH DCC UncQ] : [0+10+3+1]
No. Series           :  2
No. Obs.             :  1037
Log-Likelihood       :  -4863.167
Av.Log-Likelihood    :  -4.69 

Optimal Parameters
-----------------------------------
               Estimate  Std. Error  t value Pr(>|t|)
[GSPC].mu      0.215241    0.055014   3.9125 0.000091
[GSPC].ar1    -0.112713    0.034833  -3.2359 0.001213
[GSPC].omega   0.302235    0.131215   2.3034 0.021259
[GSPC].alpha1  0.196408    0.060734   3.2339 0.001221
[GSPC].beta1   0.762232    0.064558  11.8069 0.000000
[SSEC].mu      0.078023    0.096492   0.8086 0.418748
[SSEC].ar1     0.053512    0.034308   1.5598 0.118816
[SSEC].omega   0.388848    0.206514   1.8829 0.059712
[SSEC].alpha1  0.117551    0.036551   3.2161 0.001300
[SSEC].beta1   0.848819    0.047688  17.7993 0.000000
[Joint]dcca1   0.013581    0.007305   1.8591 0.063013
[Joint]dccb1   0.971799    0.011366  85.5008 0.000000
[Joint]mshape  8.290728    1.110120   7.4683 0.000000

Information Criteria
---------------------
                   
Akaike       9.4063
Bayes        9.4730
Shibata      9.4059
Hannan-Quinn 9.4316


Elapsed time : 3.121074 

(2) 绘制DCC估计后的条件均值图、条件方差图、条件协方差图 、动态条件相关系数图

plot(fit_dcc)

需要数据集的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/1E59qYZuGhwlrx6gn4JJZTg?pwd=2138
提取码:2138 


更多优质内容持续发布中,请移步主页查看。

   点赞+关注,下次不迷路!

这篇关于R实现动态条件相关模型与GARCH模型结合研究中美股市动态相关性(DCC-GARCH模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/220154

相关文章

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方