NLG(自然语言生成)评估指标介绍

2023-10-16 06:52

本文主要是介绍NLG(自然语言生成)评估指标介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

诸神缄默不语-个人CSDN博文目录

本文介绍自然语言生成任务中的各种评估指标。
因为我是之前做文本摘要才接触到这一部分内容的,所以本文也是文本摘要中心。

持续更新。

文章目录

  • 1. 常用术语
  • 2. ROUGE (Recall Oriented Understudy for Gisting Evaluation)
    • 1. 计算指标
    • 2. 对rouge指标的更深入研究和改进
  • 3. BLEU (Bilingual Evaluation Understudy)
  • 4. METEOR (Metric for Evaluation for Translation with Explicit Ordering)
  • 5. Perplexity
  • 6. Bertscore
  • 7. Faithfulness
  • 8. 人工评估指标
  • 9. InfoLM
  • 10. MOVERSCORE
  • 11. BEER
  • 12. BEND
  • 参考资料

1. 常用术语

模型生成的句子、预测结果——candidate
真实标签——reference、ground-truth

2. ROUGE (Recall Oriented Understudy for Gisting Evaluation)

ROUGE值是文本摘要任务重最常用的机器评估指标,衡量生成文本与真实标签之间的相似程度。

precision:candidate中匹配reference的内容占candidate比例
recall:candidate中匹配reference的内容占reference比例

示例:

Reference: I work on machine learning.Candidate A: I work.Candidate B: He works on machine learning.

在这个例子中,用unigram(可以理解为一个词或token)1衡量匹配:A就比B的precision更高(A的匹配内容I work占candidate 100%,B的on machine learning占60%),但B的recall更高(60% VS 40%)。

出处论文:(2004 WS) ROUGE: A Package for Automatic Evaluation of Summaries

感觉没有2004年之后的文本摘要论文不使用这个指标的,如果看到有的话我会专门来这里提一嘴的。

分类:ROUGE-N(常用其中的ROUGE-1和ROUGE-2), ROUGE-L,ROUGE-W,ROUGE-S(后两种不常用)
原版论文中ROUGE主要关注recall值,但事实上在用的时候可以用precision、recall和F值。(我看到很多论文都用的是F值)

1. 计算指标

每种rouge值原本都是计算recall的,主要区别在于这个匹配文本的单位的选择:

ROUGE-N:基于n-grams,如ROUGE-1计算基于匹配unigrams的recall,以此类推。
ROUGE-L:基于longest common subsequence (LCS)
ROUGE-W:基于weighted LCS
ROUGE-S:基于skip-bigram co-occurence statistics(skip-bigram指两个共同出现的单词,不管中间隔了多远。要计算任何bigram的出现可能 C n 2 C_n^2 Cn2

以ROUGE-L为例, A A A 是candidate,长度 m m m B B B 是reference,长度 n n n
P = L C S ( A , B ) m P=\frac{LCS(A,B)}{m} P=mLCS(A,B) R = L C S ( A , B ) n R=\frac{LCS(A,B)}{n} R=nLCS(A,B) F = ( 1 + b 2 ) R P R + b 2 P F=\frac{(1+b^2)RP}{R+b^2P} F=R+b2P(1+b2)RP

2. 对rouge指标的更深入研究和改进

(2018 EMNLP) A Graph-theoretic Summary Evaluation for ROUGE

批判文学:(2023 ACL) Rogue Scores:喷原包有bug。嘛我之前也喷过2,终于有顶会论文喷了我很欣慰

3. BLEU (Bilingual Evaluation Understudy)

常用于翻译领域。
出处论文:(2002 ACL) Bleu: a Method for Automatic Evaluation of Machine Translation

precision用modified n-gram precision估计,recall用best match length估计。

Modified n-gram precision:
n-gram precision是candidate中与reference匹配的n-grams占candidates的比例。但仅用这一指标会出现问题。
举例来说:

Reference: I work on machine learning.Candidate 1: He works on machine learning.Candidate 2: He works on on machine machine learning learning.

candidate 1的unigram precision有60%(3/5),candidate 2的有75%(6/8),但显然candidate 1比2更好。
为了解决这种问题,我们提出了“modified” n-gram precision,仅按照reference中匹配文本的出现次数来计算candidate中的出现次数。这样candidate中的onmachinelearning就各自只计算一次,candidate 2的unigram precision就变成了37.5%(3/8)。

对多个candidate的n-gram precision,求几何平均(因为precision随n呈几何增长,因此対数平均能更好地代表所有数值(这块其实我没看懂)):
P r e c i s i o n = exp ⁡ ( ∑ n = 1 N w n log ⁡ p n ) , where  w n = 1 / n Precision=\exp(\sum_{n=1}^Nw_n\log p_n),\ \text{where} \ w_n=1/n Precision=exp(n=1Nwnlogpn), where wn=1/n

Best match length:
recall的问题在于可能存在多个reference texts,故难以衡量candidate对整体reference的sensitivity(这块其实我也没看懂)。显然长的candidate会包含更多匹配文本,但我们也已经保证了candidate不会无限长,因为这样的precision可能很低。因此,我们可以从惩罚candidate的简洁性(文本短)入手来设计recall指标:
在modified n-gram precision中添加一个multiplicative factor B P BP BP
B P = { 1 , if  c > r exp ⁡ ( 1 − r c ) , otherwise \begin{aligned} BP=\begin{cases}1,& \text{if}\ c >r\\ \exp \left( 1-\dfrac{r}{c}\right) ,&\text{otherwise}\end{cases} \end{aligned} BP={1,exp(1cr),if c>rotherwise
其中 c c c 是candidates总长度, r r r 是reference有效长度(如reference长度平均值),随着candidate长度( c c c)下降, B P BP BP 也随之减少,起到了惩罚短句的作用。

4. METEOR (Metric for Evaluation for Translation with Explicit Ordering)

常用于翻译领域。

出处:(2005) METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments

BLEU的问题在于 B P BP BP 值所用的长度是平均值,因此单句得分不清晰。而METEOR调整了precision和recall的计算方式,用基于mapping unigrams的weighted F-score和penalty function for incorrect word order来代替。

Weighted F-score:
首先,我们要找到candidate和reference间最大的可以形成对齐(alignment)的映射(mappings)子集(subset)。在经过Porter stemming[^3]、用了WordNet同义词后,假设找到的对齐数是 m m m,则precision就是 m / c m/c m/c c c c 是candidate长度)、recall是 m / r m/r m/r r r r 是reference长度),F就是 F = P R α P + ( 1 − α ) R F=\frac{PR}{\alpha P+(1-\alpha)R} F=αP+(1α)RPR

Penalty function:
考虑candidate中的单词顺序:
P e n a l t y = γ ( c m ) β , where  0 ≤ γ ≤ 1 Penalty=\gamma(\frac{c}{m})^\beta,\ \text{where}\ 0\leq\gamma\leq1 Penalty=γ(mc)β, where 0γ1
其中 c c c 是matching chunks数, m m m 是matches总数。因此如果大多数matches是连续的, c c c 就会小,penalty就会低。这部分我的理解是:连续的matches组成一个chunk。但我不确定,可能我会去查阅更多资料。

最终METEOR得分的计算方式为:
( 1 − P e n a l t y ) F (1-Penalty)F (1Penalty)F

5. Perplexity

常用于语言模型训练。
待补。

6. Bertscore

使用该指标的论文:Rewards with Negative Examples for Reinforced Topic-Focused Abstractive Summarization
待补。

7. Faithfulness

  1. Entailment Ranking Generated Summaries by Correctness: An Interesting but Challenging Application for Natural Language Inference:用预训练的基于entailment的方法评估原文蕴含生成摘要的概率
  2. FactCC Evaluating the Factual Consistency of Abstractive Text Summarization:用基于规则的变换生成假摘要,训练基于Bert的模型,分类生成摘要是否faithful
  3. DAE Annotating and Modeling Fine-grained Factuality in Summarization:收集细粒度的词/依赖/句级别的faithfulness的标注,用这些标注训练factuality检测模型

8. 人工评估指标

文本的流畅程度、对原文的忠实程度、对原文重要内容的包含程度、语句的简洁程度等

9. InfoLM

出处论文:(2022 AAAI) InfoLM: A New Metric to Evaluate Summarization & Data2Text Generation
待补。

10. MOVERSCORE

待补

11. BEER

待补。

12. BEND

待补。

参考资料

  1. Metrics for NLG evaluation. Simple natural language processing… | by Desh Raj | Explorations in Language and Learning | Medium
  2. 我还没看,等我看完了补上:
    Revisiting Automatic Evaluation of Extractive Summarization Task: Can We Do Better than ROUGE?
    Benchmarking Answer Verification Methods for Question Answering-Based Summarization Evaluation Metrics
    SARI
    InfoLM: A New Metric to Evaluate Summarization & Data2Text Generation
    SPICE
    Play the Shannon Game With Language Models: A Human-Free Approach to Summary Evaluation
    Reference-free Summarization Evaluation via Semantic Correlation and Compression Ratio

  1. 参考unigram_百度百科
    父词条:n-gram
    unigram: 1个word
    bigram: 2个word
    trigram : 3个word
    (注意此处的word是英文的概念,在中文中可能会根据需要指代字或词)
    中文中如果用字作为基本单位,示例:
    西安交通大学:
    unigram 形式为:西/安/交/通/大/学
    bigram形式为: 西安/安交/交通/通大/大学
    trigram形式为:西安交/安交通/交通大/通大学 ↩︎

  2. pyrouge和rouge在Linux上的安装方法以及结果比较 ↩︎

这篇关于NLG(自然语言生成)评估指标介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219807

相关文章

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为